
 1

  
 

PCI-3E Manual 
 

PCI Interface Card for 
Three Incremental Encoders 

with 
I/O Port 

 
 Revision: 1.01  

09/30/2010 
 
 
 
 
 
 

 



 2

Table of Contents 
 
1 Introduction 6 

1.1 Purpose 6 
1.2 Scope 6 

2 Installation Instructions 7 
2.1 Windows Operating Sytem 7 
2.2 Linux Operating System 9 

3 Troubleshooting 11 
4 Running Demonstration Programs 12 
5 Architecture of PCI-3E 13 

5.1 Overview 13 
5.2 Principle of Operation for a Channel 15 
5.3 Minimum Programming for a Channel 17 

6 PCI-3E Registers 21 
6.1 Control Registers (reg.#3, reg.#11, reg.#19) 25 
6.2 Status Registers (reg.#4, reg.#12, reg.#20) 28 
6.3 Miscellaneous Registers (reg.#7, reg.#15, reg.#23) 30 
6.4 Interrupt Registers (reg.#34, reg.#35) 31 
6.5 FIFO Registers (reg.#37, reg.#38, reg.#39) 32 
6.6 Digital Input Triggering Registers (reg.#27and reg.#28) 35 
6.7 Data Logging and Input/Output Registers (reg.#30, reg.#31, reg.#40 ~ reg.#47) 36 

7 Trigger / Capture / Data Logging Feature 38 
7.1 Trigger Signal Generated By Encoders 38 
7.2 Trigger Signal Generated by Digital inputs 40 
7.3 Data Logging 41 

8 Example Programs 44 
9 Function Calls 46 

9.1 Basic functions (5 functions) 47 
9.2 PCI-3E card information functions (3 functions) 48 
9.3 User friendly functions (78 functions) 49 
9.4 Function Definitions 55 

9.4.1 PCI3E_CaptureTimeAndCounts 55 
9.4.2 PCI3E_CardCount 56 
9.4.3 PCI3E_ClearCapturedStatus 57 
9.4.4 PCI3E_ClearDigitalInputTriggerStatus 58 
9.4.5 PCI3E_ClearFIFOBuffer 59 
9.4.6 PCI3E_DisableFIFOBuffer 60 
9.4.7 PCI3E_ EnableFIFOBuffer 61 
9.4.8 PCI3E_GetCaptureEnabled 62 
9.4.9 PCI3E_GetControlMode 63 
9.4.10 PCI3E_GetCount 64 
9.4.11 PCI3E_GetCounterMode 66 
9.4.12 PCI3E_GetDigitalInputTriggerConfig 67 
9.4.13 PCI3E_GetDigitalInputTriggerStatus 68 
9.4.14 PCI3E_GetEnableAccumulator 69 
9.4.15 PCI3E_GetEnableIndex 70 
9.4.16 PCI3E_GetFIFOBufferCount 71 
9.4.17 PCI3E_GetForward 72 
9.4.18 PCI3E_GetInterruptControl 73 
9.4.19 PCI3E_GetInvertIndex 74 
9.4.20 PCI3E_GetMatch 75 
9.4.21 PCI3E_GetMultiplier 76 
9.4.22 PCI3E_GetOutputPortConfig 77 



 3

9.4.23 PCI3E_GetPresetOnIndex 79 
9.4.24 PCI3E_GetPresetValue 80 
9.4.25 PCI3E_GetROM_ID 81 
9.4.26 PCI3E_GetSamplesRemaining 82 
9.4.27 PCI3E_GetSamplesToCollect 83 
9.4.28 PCI3E_GetSamplingRateCounter 84 
9.4.29 PCI3E_GetSamplingRateMultiplier 85 
9.4.30 PCI3E_GetSlotNumber 86 
9.4.31 PCI3E_GetStatus 87 
9.4.32 PCI3E_GetStatusEx 88 
9.4.33 PCI3E_GetTimeBasedLogSettings 90 
9.4.34 PCI3E_GetTimeStamp 92 
9.4.35 PCI3E_GetTriggerOnDecrease 93 
9.4.36 PCI3E_GetTriggerOnIncrease 94 
9.4.37 PCI3E_GetTriggerOnIndex 95 
9.4.38 PCI3E_GetTriggerOnMatch 96 
9.4.39 PCI3E_GetTriggerOnRollover 97 
9.4.40 PCI3E_GetTriggerOnRollunder 98 
9.4.41 PCI3E_GetTriggerOnZero 99 
9.4.42 PCI3E_GetVersion 100 
9.4.43 PCI3E_Initialize 101 
9.4.44 PCI3E_PresetCount 103 
9.4.45 PCI3E_ReadFIFOBuffer 104 
9.4.46 PCI3E_ReadFIFOBufferStruct 106 
9.4.47 PCI3E_ReadInputPortRegister 108 
9.4.48 PCI3E_ReadOutputLatch 109 
9.4.49 PCI3E_ReadOutputPortRegister 110 
9.4.50 PCI3E_ReadRegister 111 
9.4.51 PCI3E_ReadTimeAndCounts 112 
9.4.52 PCI3E_ReadTimeStamp 113 
9.4.53 PCI3E_RegisterInterruptHandler 114 
9.4.54 PCI3E_ResetCount 116 
9.4.55 PCI3E_ResetTimeStamp 117 
9.4.56 PCI3E_SetCaptureEnabled 118 
9.4.57 PCI3E_SetControlMode 119 
9.4.58 PCI3E_SetCount 120 
9.4.59 PCI3E_SetCounterMode 121 
9.4.60 PCI3E_SetDigitalInputTriggerConfig 122 
9.4.61 PCI3E_SetEnableAccumulator 124 
9.4.62 PCI3E_SetEnableIndex 125 
9.4.63 PCI3E_SetForward 126 
9.4.64 PCI3E_SetInterruptControl 127 
9.4.65 PCI3E_SetInvertIndex 129 
9.4.66 PCI3E_SetMatch 130 
9.4.67 PCI3E_SetMultiplier 131 
9.4.68 PCI3E_SetOutputPortConfig 132 
9.4.69 PCI3E_SetPresetOnIndex 134 
9.4.70 PCI3E_SetPresetValue 135 
9.4.71 PCI3E_SetSamplesToCollect 136 
9.4.72 PCI3E_SetSamplingRateMultiplier 137 
9.4.73 PCI3E_SetTimeBasedLogSettings 138 
9.4.74 PCI3E_SetTriggerOnDecrease 140 
9.4.75 PCI3E_SetTriggerOnIncrease 141 
9.4.76 PCI3E_SetTriggerOnIndex 142 
9.4.77 PCI3E_SetTriggerOnMatch 143 



 4

9.4.78 PCI3E_SetTriggerOnRollover 144 
9.4.79 PCI3E_SetTriggerOnRollunder 145 
9.4.80 PCI3E_SetTriggerOnZero 146 
9.4.81 PCI3E_Shutdown 147 
9.4.82 PCI3E_StartAcquisition 148 
9.4.83 PCI3E_StopAcquisition 149 
9.4.84 PCI3E_UnRegisterInterruptHandler 150 
9.4.85 PCI3E_WriteOutputPortRegister 151 
9.4.86 PCI3E_WriteRegister 152 

10 Interface Circuits 153 
11 Error Codes 156 
 



 5

Amendments 
Date Comment(s) Authors      _________________  
1/19/06 PCI-3E Manual Revision 1.0  Sup Premvuti / Steve Smith 
02/26/08 Fixed typo in PCI-3E_CaptureTimeAndCounts C example  Steve Smith 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 6

1 Introduction 

1.1 Purpose 
The purpose of this manual is to provide aid in understanding how to use the features of the PCI-
3E, PCI Interface Card for 3 Incremental Encoders with I/O Port.  The features of the PCI-3E card 
are made accessible by using the functions provided in the USD_PCI_3E.dll. 

  

1.2 Scope 
This document shall describe how to use each of the available interface methods provided by the 
PCI-3E card. The following chapters are included. 
 

• Installation Instructions 
• Troubleshooting 
• Running Demonstration Program 
• Architecture of PCI-3E 
• PCI-3E Registers 
• Trigger/Capture Feature 
• Typical Usage Scenario 
• Function Calls 
• Using Java 
• Input/Output Port Diagram 
• Error Codes 



 7

2 Installation Instructions 

2.1 Windows Operating Sytem 
Please follow these five steps to install PCI-3E and its software. 
 
1. Run the Setup.exe 
 Note: The installation checks if an old version of windrvr.sys already exists in the  
 ..system32\drivers directory.  If an older version is found, a dialog will be displayed
 which presents the following three options: 
 
 Option 1 - Install windrvr.sys version 5.2.2 and make a backup of the older version and 
 place it in the C:\Program Files\PCI3E\Backup directory. 
 

Option 2 - Leave the older version installed and copy version 5.2.2 to C:\Program 
Files\PCI3E directory. 

 
 Option 3 - Cancel the installation. 
 

The PCI-3E demos will not function properly with an older version of the windrvr.sys file.  
 
 If you are running an application that requires a previous version of the windrvr.sys file,  
 please contact US Digital for support. 
 
 If you need to restore (or run with) the older version simply copy the windrvr.sys from the  
 C:\Program Files\PCI3E\Backup directory to the ..\system32\drivers directory and then 
 reboot. 
 
2. Shutdown the computer and install the PCI-3E card(s). 
 

2.1 For additional safety, disconnect power from the computer at the main supply. 
 

2.2 Observe static handling procedures while working with the PCI-3E: wear an approved 
ground strap, and open the PCI-3E packaging only at a work surface with a grounded anti-
static mat. 

 
2.3 Carefully insert the PCI-3E card into an available PCI slot. You can install one or more 
PCI-3E cards at the same time. 

 
3. Power-On the computer. The amber LED on the PCI-3E card should be flashing. If the LED is 
not flashing see Chapter 3, Troubleshooting. 
 
4. The PCI3E_rev01.inf is copied to the WINNT\inf directory and installed by the setup program 



 8

so the Found New Hardware Wizard should not appear.  If it does appear, follow its instructions; 
when asked, specify the location of the PCI3E_rev01.inf file.  A copy of this file has also been 
placed in the C:\Program Files\PCI-3E Demo directory. 
 
5. Launch the PCI-3E VB Demo to test all installed PCI-3E cards. (See Chapter 4 Running 
Demonstration Program) After the PCI-3E VB Demo is running properly with PCI-3E card, 
LabVIEW users may proceed to install LabVIEW VIs for PCI-3E. 
 
If the demo application fails to load or the device manager indicates that there is a problem with 
the Jungo\US DIGITAL PCI-3E Firmware Revision 00 device, then ensure the windrvr.sys file is 
located in the correct directory, especially if installing on a multi-boot system or if the OS is 
installed in a non-default directory.  The windrvr.sys should be located in one of the directories 
specified for the OS below: 
 
   Windows 2000 - C:\WINNT\system32\drivers 
   Windows XP  - C:\Windows\system32\drivers 
 
Please contact US Digital Customer Support if you have additional questions. 



 9

2.2 Linux Operating System 
Please follow these steps to install PCI-3E and its software. 
 
1. Shutdown the computer and install the PCI-3E card(s). 
 

1.1 For additional safety, disconnect power from the computer at the main supply. 
 

1.2 Observe static handling procedures while working with the PCI-3E: wear an approved 
ground strap, and open the PCI-3E packaging only at a work surface with a grounded anti-
static mat. 

 
1.3 Carefully insert the PCI-3E card into an available PCI slot. You can install one or more 
PCI-3E cards at the same time. 

 
2. Power-On the computer. The amber LED on the PCI-3E card should be flashing. If the LED is 
not flashing see Chapter 3, Trouble Shooting. 
 
3. Create local directory to copy the pci3e-1.0.tar file to, i.e., /home/steve/pci3e and change to the 
directory. 
 $ mkdir /home/steve/pci3e 
 $ cd /home/steve/pci3e 

 
4.  After the pci3e-1.0.tar file has been copied to the local directory.  Extract the contents of pci3e-
1.0.tar file. 
 $ tar xzvf pci3e-1.0.tar 
 
5.  Change to root or an equivalent access level. 
 $ su 
  password 

 
6.  The pci3e kernel module driver has only been tested on version 2.6.12-gentoo-r10 of Linux. In 
order to access the kernel source code, the makefile relies on a symbolic link to the kernel source 
directory.  If one does not exist you may create one using the following command:   
 
Note: the version of linux installed on your system may be different than the one specified in the 
following command.  If you are using version 2.6.12-gentoo-r10 of Linux, then you may skip to 
step 8. 
 # ln -s /usr/src/linux-2.6.12-gentoo-r10 /usr/src/ linux 

 
7.  Remove previously built object files and recompile the pci3e driver and demo. 
 # make clean 
 # make 
 # make demo 

 
8.  Allow the script files to be executed. 
    # chmod +x load 
    # chmod +x unload 



 10

    # chmod +x pci3e* 

 
9. Load the pci3e kernel module. 
 # ./load 

 
10. Run the demo. 
 # ./demo  (press any key to terminate the demo) 



 11

3 Troubleshooting 
Symptom:  

The amber LED on the PCI-3E card does not come on after the computer is Powered-On. 
Problem:  

The board is not receiving any power.   
The firmware initialization has failed. 

Resolution:  
Power-Off the computer and insure that the PCI-3E card is installed correctly. 
Contact US Digital customer support, if all attempts fail. 

Symptom:  
The amber LED on the PCI-3E card is on but does not flash after the computer is Powered-
On. 

Problem:  
The firmware initialization has succeeded but the PCI and PCI-3E board is not 
communicating. 

Resolution:  
Power-Off the computer and insure that the PCI-3E card is installed correctly. 
Contact US Digital customer support, if all attempts fail. 



 12

4 Running Demonstration Programs 
 
After PCI-3E hardware and driver software has been successfully installed, you should be able to 
run accompanied demonstration programs. The demo programs will give you an opportunity to 
explore features of PCI-3E. 
 
Steps to run the demo programs (written in C, Visual Basic or LabVIEW): 
 
(1) Connect at least one encoder to encoder connectors of PCI-3E. 
(2) Launch a demo program. 
(3) The demo program will display the number of existing PCI-3E board(s) on the PCI bus and 
automatically assign unique device numbers for each PCI-3E board. Use an option of the demo 
program to choose a PCI-3E board you want to access. 
(4) On the demo screen, locate a command to set “Cycles Per Revolution”. This number should be 
set to match the connected encoder. When using the VB Demo, select View\Configuration menu 
item to display Cycles Per Revolution input text box. 
(5) Turn the encoder and see if the number of counts and the graph display match the movement 
of the encoder’s shaft. 
(6) Explore available features of each demo such as changing quadrature mode. 
(7) The demo programs also allow you to directly access all 48 registers of PCI-3E. The detailed 
explanation of architecture of PCI-3E and its registers can be found in the following chapters. 
 
 
 
 
 
 



 13

5 Architecture of PCI-3E 
 

5.1 Overview  
 

Memory-mapped registers based system: 
 
PCI-3E interfaces to an application program through 48 memory-mapped 32-bit registers. An 
application program reads or writes registers to set mode, select functions or get data from PCI-3E. 
 
48 registers are divided into 8 groups (See Figure 5.1) 
 
(1) Channel 0 registers group:  register 0 to register 6 
(2) Channel 1 registers group:  register 8 to register 14 
(3) Channel 2 registers group:  register 16 to register 22 
(4) Miscellaneous registers group: register 7, 15 and 23 
(5) Interrupt registers group:  register 34 and 35 
(6) FIFO registers group:  register 37, 38 and 39 
(7) Digital input triggering group: register 27 and 28 
(8) Data Logging and I/O group: register 30, 31, 40 ~ 47 
 
(Note: register 24, 25, 26, 29, 32, 33 and 36 are reserved.) 
 
All three channels are identical in number of registers and operation for each register. Each 
channel works independently based on its own set of registers.  
 
Miscellaneous registers group consists of Command Register (reg.#7), Time Stamp Latch Register 
(reg.#15), and 33 MHz Time Stamp Counter (reg.#23). 
 
Interrupt registers group consists of Interrupt Control Register (reg.#34) and Interrupt Status 
Register(reg.#35). 
 
FIFO registers group consists of FIFO ON/OFF Register (reg.#37), FIFO Status/Control Register 
(reg.#38), and FIFO Read Register (reg.#39). 
 
For the digital input triggering group, and the data logging and I/O group, see 6.6 and 6.7 for 
details of registers in these groups. 



 14

CH1 Group
of Registers

A

B

I

Trigger
In

Trigger
Out

Preset
Output
Match
Control
Status
Reset

Transfer

8
9

10
11
12
13
14

CH1
LogicEncoder 1

CH0 Group
of Registers

A

B

I

Trigger
In

Trigger
Out

Preset
Output
Match
Control
Status
Reset

Transfer

0
1
2
3
4
5
6

CH0
LogicEncoder 0

CH2 Group
of Registers

A

B

I

Trigger
In

Trigger
Out

Preset
Output
Match
Control
Status
Reset

Transfer

16
17
18
19
20
21
22

CH2
LogicEncoder 2

30
31
40
41
42
43
44
45
46
47

Miscellaneous
Group of Registers

Command
TS Latch

TS Counter

7
15
23

PCI Bus
32-bit / 33 MHz

FIFO Registers

ON / OFF
Status / Ctrl

Read

37
38
39

Interrupt Registers

Int. Control
Int. Status

34
35

FIFO
Buffer
Logic

Interrupt
Logic

FIFO
Half-full
Signal

Combined
Trigger Out
Signal

Interrupt Out

Digital Input
Triggering Logic

Data Logging
and Input /

Output Logic

IN3

IN2

IN1

IN0

OUT3

OUT2

OUT1

OUT0

27
28 See 6.6

Digital Input
Triggering
Registers

Data Logging
and I/O Registers

See 6.7

Trigger
Out

Trigger
Out

I/O
Port

 
 
 

Figure 5.1 Block Diagram of PCI-3E 



 15

5.2 Principle of Operation for a Channel 
 
The heart of each channel is a 24 bit up-down counter. (See Figure 5.2)  It receives signals 
commanding it to count up or down from a state machine that watches the quadrature signals 
coming in. When the state machine sees the quadrature advance, it issues a pulse to increment the 
counter. When it sees the quadrature retard (move backward) it issues a pulse to decrement the 
counter.  The various input modes such as X1, X2, X4 and pulse/direction mode are implemented 
via the input state machine. 
 
The output of the counter is made available to the host PCI bus through a latching register called 
the output latch.  This was done so as to provide a way to capture and hold a snapshot of encoder 
position in hardware without requiring immediate software attention.  There are two ways to 
transfer the counter value to the output latch: the host software can write (any value) to the output 
latch address, or the host can set up a triggering event that will use dedicated hardware to 
recognize a condition that will capture the counter value.  Triggering is explained in detail in a 
later paragraph. 
 
The counter is capable of counting in special modes that roll over from value N to value 0, or stop 
counting when a limit is reached.  It does this with the help of a preset register, which defines the 
upper limit of the counting process.  The value of the counter is continuously compared to the 
preset register, and in these special counting modes the counter is either disabled or reset or preset. 
 
A separate match register is provided, to allow for comparisons against an arbitrary value even 
while the preset register is being used to implement a limited-range counting mode.  The result of 
a match can be used to generate a trigger that will cause transfer of the counter value to the output 
latch on this channel and/or other channels simultaneously. 
 
A control register is provided, to allow the various counting modes and input modes to be 
specified.  A status register is also available to report on various conditions existing within the 
channel; some conditions are latched, and persist until cleared explicity by writing 0xFFFFFFFF to 
the status register. 
 
The triggering capability allows the host to specify conditions that will cause a capture of counter 
values on multiple channels.  The conditions include advance of quadrature, retard of quadrature, 
passing through zero, encountering an index, reaching a value that corresponds to the match 
register, carry condition, or borrow condition.  The specified condition may be sensed on any 
channel, and sent out of the channel to a higher level logic block, where it is OR'ed with the 
triggers from other channels. (See Figure 5.1)  The resulting "combined trigger" then re-enters all 
of the channels; a channel may be enabled to respond to this event by transferring the counter 
contents to the output latch. 



 16

 
 

PCI Data Write

Quadrature
Signals (A, B, I)

Trigger In

C
O
U
N
T
E
R

(24 bit)

P
R
E
S
E
T

M
A
T
C
H

C
O
N
T
R
O
L

S
T
A
T
U
S

O
U
T
P
U
T

Comparator

Internal Register

PCI Data Read

Trigger Out

Reg. #
0, 8, 16

Reg. #
2, 10, 18

Reg. #
3, 11, 19

Reg. #
 4, 12, 20

Read: Latched Data
Write: Transfer
   Counter to Latch

Cause Transfer From Counter to Latch

Reg. #
1, 9, 17

Clear Latched Status

 
 
 

Abbreviation of register names 
 
Symbol Name 
COUNTER Internal counter register 
CONTROL Control register 
STATUS Status register 
MATCH Match register 
PRESET Preset register 
OUTPUT Output latch register 
 

 
Figure 5.2 Block Diagram of Channel 



 17

5.3 Minimum Programming for a Channel 
 

Once the installation has been done successfully, all PCI-3E boards in a PC are ready to be 
accessed through provided function calls. After understanding features of 6 registers in a Channel 
Group, advanced users can operate PCI-3E with just five basic function calls. 
 
PCI Initializing 
9.4.43  PCI3E_Initialize 
9.4.2   PCI3E_CardCount 
9.4.81  PCI3E_Shutdown 

 
Read/Write Registers 
9.4.49  PCI3E_ReadRegister 
9.4.85  PCI3E_WriteRegister 

 
In addition to 5 basic function calls, “User friendly functions” are also provided in order to 
facilitate writing application programs with better readability. Names of user friendly functions 
refer directly to their functions or features. (See Chapter 9 “Function Calls” for details.)  Each 
function call will be translated into reading, writing or combinations of reading and writing one or 
more of 48 registers of PCI-3E. 
 
User friendly functions are used in the following example of a minimum program. Register 
numbers accessed by function calls are also provided as references. 
 
A minimum program in C consists of four sections. 
(Register numbers shown in this section are based on Channel 0. For accessing other channels, 
please refer to Chapter 6 PCI-3E Registers.) 
 
1. Initialize PCI-3E cards 
2. Configure counter 
 2.1 Select value of Preset register (reg.#0) 
2.2 Select value of Control register (reg.#3) 
 - quadrature mode 
 - count mode 
 - direction of count (up/down) 
 - master enable 
3. Get count from Output Latch register (reg.#1) 
4. Close PCI-3E 
 
Description: 
 
(1) Initialize PCI-3E cards and get number of total PCI-3E cards on PCI bus. 
 
Use this function: 
 PCI3E_Initialize(short *piDeviceCount); 

 



 18

 (2) Select value of Preset Register (reg.#0) 
 
If you plan to select the following counter modes; Range-limit mode, Non-recycle mode, or 
Modulo-N mode (See 6.1 Control Registers); the preset register must be set to your desired value. 
 
Use this function: 
 PCI3E_SetPresetValue(short iDeviceNo, short iEncod er, long lVal); 

(3) Select quadrature mode in Control Register (reg.#3) 
 
Bit 15 and 14 determine how the accumulator increments:  These bits may be referred to as either 
quadrature mode or multiplier. 
 

Mode bit15, bit14 Description 
0 00 A quadrature input  = Clock 

B quadrature input  = Direction 
Each rising edge of A input causes a counter increment or 
decrement, depending on the level of B input. 

1 01 Accumulator increments once for every for four quadrature 
states (X1). 

2 10 Accumulator increments once for every for two quadrature 
states (X2) 

3 11 Accumulator increments once for every for quadrature state 
(X4) 

 
 

Use this function: 
 PCI3E_SetMultiplier(short iDeviceNo, short iEncode r, short iMode); 

 
(4) Select count mode in Control Register (reg.#3) 
 
Bit 17 and 16 determine mode of internal counter. 
 

Mode bit17
, 

bit16 

Description 

0 00 Simple 24-bit counter mode 
1 01 Range-limit mode 
2 10 Non-recycle mode 
3 11 Modulo-N mode 

 

 
Use this function: 

PCI3E_SetCounterMode(short iDeviceNo, short iEncode r, short iMode); 

 
(5) Set direction bit (swap quadrature A/B bit) in Control Register (reg.#3) 
 
Bit 19 of Control Register controls the direction of count (up/down) 



 19

“0”  Quadrature signals A and B are treated normally in a channel’s internal logic. 
“1”  Quadrature signals A and B are swapped in a channel’s internal logic. 
As the result, the direction of count (up/down) will be reversed when bit 19 changes value. 
 
Use this function: 
 PCI3E_SetForward(short iDeviceNo, short iEncoder, BOOL bVal); 
 

Note that PCI3E_SetForward function sets bit 19 of Control register when its parameter, bVal, is 
‘1’. 
 
(6) Set master enable bit in Control Register (reg.#3) 
 
Set bit 18 to ‘1’ to enable accumulator. 
 

Use this function: 
PCI3E_SetEnableAccumulator(short iDeviceNo, short i Encoder, BOOL bVal); 

 
(7) Get count data from Output Latch Register (reg.#1) 
 
The Output Latch Register is used to latch the count value from the internal counter register for 
reading by an application program.  It is important to understand that the Output Latch Register 
will be updated ONLY after a WRITE action to the Output Latch Register (data is irrelevant). This 
means an application can read the Output Latch Register at any time. But its value will be updated 
to current count value only after it has been written. 
 
To accommodate users who want to write a simple program that retrieves encoder counts, 
PCI3E_GetCount function is provided. When using this function, please be aware that write to and 
read from Output Latch Register are performed consecutively in one call of PCI3E_GetCount. 
 
Use this function: 
PCI3E_GetCount(short iDeviceNo, short iEncoder, lon g *plVal);  
 
(8) Close PCI-3E before exiting application 
 
The PCI3E_Shutdown function must be call in order to disconnect from the PCI3E 
driver. 

 
Use this function:  
             PCI3E_Shutdown();  



 20

A minimum program in C  
 
// C Hello World.cpp: Defines the entry point for t he console application. 
// 
 
#include <conio.h> 
#include "stdio.h" 
#include "windows.h" 
#include "..\PCI_3e.h" 
 
int main(int argc, char* argv[]) 
{ 
    short devicecount = 0; 
    short iResult = 0; 
    unsigned long ctrlmode = 0; 
    unsigned long ulCount; 
    unsigned long ulPrevCount; 
 
    printf("--------------------------------\n"); 
    printf("PCI-3E Hello World!\n"); 
    printf("--------------------------------\n"); 
 
    // Initialize the PCI-3E driver. 
    iResult = PCI3E_Initialize(&devicecount);         // initialize the card 
 
 // Check result code... 
 if (iResult != S_OK) { 
printf("Failed to initialize PCI-3E driver!  Result  code = %d.\nPress any key to exit.\n",   
iResult); 
  while( !_kbhit() ) 
   Sleep(100); 
 
  goto done; 
 } 
 
    // Caution! The reset of the example is impleme nted without any error checking. 
 
    // Configure encoder channel 0. 
    PCI3E_SetPresetValue(0,0,499);          // Set the preset register to t he CPR-1 
    PCI3E_SetMultiplier(0,0,3);             // Set quadrature mode to X4. 
    PCI3E_SetCounterMode(0,0,3);            // Set counter mode to modulo-N . 
    PCI3E_SetForward(0,0,TRUE);             // Optional: determines the  direction of counting. 
    PCI3E_SetEnableAccumulator(0,0,TRUE);   // Enable the counter. **IMPORTANT** 
     
    // PCI3E_SetControlMode(0,0,0xFC000);   // You may replace the previous five lines with  
                                            // one call to PCI3E_SetControlMode using to correct 
                                            // cont rol mode value. 
 
    printf("Reading encoder channel 0. Press any ke y to exit.\n"); 
    // Waits for the user to press any key, then ex its. 
    while( !_kbhit() ){ 
        PCI3E_GetCount(0,0,&ulCount); 
        // Update display when value changes 
        if (ulPrevCount != ulCount) 
            printf("%d               \r", ulCount);  
        ulPrevCount = ulCount; 
        Sleep(1); // Don't want to hog all the CPU.  
    } 
 
done: 
    // Close all open connections to the PCI3E devi ces. 
    PCI3E_Shutdown(); 
 
    return 0; 
 
} 
  



 21

6 PCI-3E Registers 
The PCI-3E board has 48 32-bit registers which are divided into the following groups 
 
(1) Encoder Channel 0 Group: 7 registers 
(2) Encoder Channel 1 Group: 7 registers 
(3) Encoder Channel 2 Group: 7 registers 
(4) Miscellaneous Group: 3 registers 
(5) Interrupt Group: 2 registers 
(6) FIFO Group: 3 registers 
(7) Digital Input Triggering Group: 2 registers 
(8) Data Logging and Input/Output Group: 10 registers 
 
Note:  7 registers are reserved. 



 22

 

 
Register 
name 

 
Description 

Register number 
 

Encoder 
Channel 
0 Group 

Encoder 
Channel 
1 Group 

Encoder 
Channel 
2 Group 

Preset Sets roll-over value for Modulo-N 
mode, and upper limit for non-
recycle and range limit modes. 

0 8 16 

Output 
Latch 

Counter contents are captured here 
by command from control register 
or by trigger capture. Writes cause 
capture of counter, reads return 
contents of output latch. 

1 9 17 

Match Used as a reference to capture 
trigger when counter equals match 
register. 

2 10 18 

Control 
(See 6.1) 

Contains bits that control the 
counting mode, quadrature mode, 
and other aspects of channel’s 
operation. 

3 11 19 

Status 
(See 6.2) 

Contains bits that describe the state 
of the counter, trigger system when 
read. 
Writing 1 to the bit that is set will 
clear that bit.  
Writing 0xFFFFFFFF to status 
register clears all status bits. 

4 12 20 

Reset Reading returns the current counter 
value. Writing any value to this 
address causes the channel’s 
counter to be reset to zero. 

5 13 21 

Transfer 
Preset 

Writing any value to this address 
causes the counter to be set to the 
contents of the channel’s preset 
register. (Write only register) 

6 14 22 

 



 23

 
 
                                              Miscellaneous Group (See 6.3) 
 
 
    Register name 
 

 
Register 
number 

 
                                 Description 

Command 7 
 

Command 
 

TS Latch 15 Time Stamp Latch 
 

TS Counter 23 33 MHz Time Stamp Counter 
 

 
 
 
 
 

Interrupt Group (See 6.4) 
 

 
    Register name 
 

 
Register 
number 

 
                                 Description 

Interrupt Control 
 

34 Enable interrupt 

Interrupt Status 
 

35 Interrupt status 

 
 
 
 
 

FIFO Group (See 6.5) 
 
 
    Register name 
 

 
Register 
number 

 
                                 Description 

FIFO ON/OFF 
 

37 Enable/Disable FIFO 

FIFO Status/Control 
 

38 Provides status of FIFO 

FIFO Read 
 

39 Returns an entry of the FIFO 

 



 24

 
 

Digital Input Triggering Group (See 6.6) 
 

 
    Register name 
 

 
Register 
number 

 
                                 Description 

Digital Input Trigger 
Control 

27 
 

Select trigger input bits and their active level (active 
high or active low) 

Digital Input Trigger 
Status 

28 Hold the latched value of detected triggers. 
 

 
 
 

 
Data Logging and Input/Output Group (See 6.7) 

 
 
    Register name 
 

 
Register 
number 

 
                                 Description 

Sampling rate 
multiplier 

30 
 

Holds a 32-bit sampling rate multiplier, “N”. 

Sampling rate counter 31 Sampling rate counter. Each count is equal to (“N”+1) 
times 30 microseconds. 

Input Port  40 Input Port 
 

Trigger Setup 41 Trigger Setup 
 

Qualifier Setup 42 Qualifier Setup 
 

Number of samples to 
collect 

43 Number of samples to collect 

Number of samples 
remaining to be 
collected 

44 Number of samples remaining to be collected 

Acquisition Control 
Register 

45 This register is used to start/stop acquisition. It also 
indicates the acquisition status. 

Output Port 46 Output Port 
 

Output Port Setup 
 

47 Output Port Setup 

 
Note:  register 24, 25, 26, 29, 32, 33 and 36 are reserved. 

 



 25

6.1 Control Registers (reg.#3, reg.#11, reg.#19) 
 

32-bit register: 
 

31   30  29  28  27  26  25   24  23  22  21  20  19  18   17  16  15  14  13  12  11   10   9    8    7     6    5   4     3    2    1    0 
0 0 0 0 0 0 0 0                  0 0 0 0 0 0 0 

 
     ‘0’ indicates unused or reserved bit which always returns ‘0’ when being read. 

 
Bit Group name Bit name Default 

value 
after reset 

 

31-24 UNUSED 31: unused31   
  30: unused30   
  29: unused29   
  28: unused28   
  27: unused27   
  26: unused26   
  25: unused25   
  24: unused24   
23 CAPTURE 23: ctrl_enable_capture 0  
22-20 INDEX 22: ctrl_index_preset_not_reset 0  
  21: ctrl_invert_index 0  
  20: ctrl_enable_index 0  
19 COUNT DIRECTION 19: ctrl_count_direction 0  
18 MASTER ENABLE 18: ctrl_enable 0  
17-16 COUNT MODE 17: count_mode1 0  
  16: count_mode0 0  
15-14 QUAD MODE 15: quad_mode1 0  
  14: quad mode0 0  
13-7 TRIGGER 13: ctrl_trigger_retard 0  
  12: ctrl_trigger_advance 0  
  11: ctrl_trigger_index 0  
  10: ctrl_trigger_borrow 0  
  9: ctrl_trigger_carry 0  
  8: ctrl_trigger_match 0  
  7: ctrl_trigger_zero 0  
6-0 RESERVED 6: reserved6   
  5: reserved5   
  4: reserved4   
  3: reserved3   
  2: reserved2   
  1: reserved1   
  0: reserved0   

 



 26

Description 
 
Registers 3, 11, 19, 27 are used to hold a 24-bit value that determines the operation of their 
respective channel.  The following table defines what each of 24 bits control. 

 
Bit Description of Control 
----------------------------------------------------------------------------------------------------- 
31-24 Unused. 
23 Allow trigger_in to cause transfer from accumulator to output latch register. 
22 When set and index is enabled, causes preset; otherwise if this bit is low a reset will occur 

when index is true. 
21 Set for active low index, (invert index); leave reset for active high index. 
20 When set, an index event will either reset or preset accumulator. 
19 Determines the count direction. See the table below. 

 
Bit 19 Quadrature Mode 

(depends on bit 15 and 14) 
Conditions of “A” input and “B” input 
�  Count Direction 

‘0’ X1, X2, X4 “A” leads “B”  � UP 
“B” leads “A”  � DOWN 

‘1’ X1, X2, X4 “A” leads “B”  � DOWN 
“B” leads “A”  � UP 

‘0’ Clock and Direction “A” = clock, “B” = ‘1’ � UP 
“A” = clock, “B” = ‘0’ � DOWN 

‘1’ Clock and Direction “A” = clock, “B” = ‘1’ � DOWN 
“A” = clock, “B” = ‘0’ � UP 

 
 

18 Master enable for accumulator. 
17, 16 Governs the behavior of the internal counter at limits: 

• '00' accumulator acts like a simple 24 bit counter – counts from 0 up to 16,777,215 and 
then rolls over to 0 again and resumes counting upward; counting downwards, the counter 
goes from 0 to 16,777,215 and continues downwards. 
• '01' accumulator uses preset register in range-limit mode – when count reaches 0 or the 
preset value the counter freezes until the inputs cause a change in direction that keeps the 
counter within the bounds of 0 and preset value. 
• '10' accumulator uses preset register in non-recycle mode – when count reaches 0 going 
down or the preset value going upwards, the counter is frozen until a channel reset is 
performed. 
• '11' accumulator uses preset register in modulo-N mode – the counter counts upward 
until it matches the preset value, then rolls over to 0, and resumes counting upwards; when 
counting downward the counter rolls under from 0 to the preset value, and counts 
downward from there. 

15, 14 Determines how the accumulator increments:  This bit may be referred to as either 
quadrature mode or multiplier. 



 27

• '00' A input = clock and B input = direction. Each rising edge of A input causes a 
counter increment or decrement, depending on the level of B input. 
• '01' accumulator increments once for every for four quadrature states (X1) 
• '10' accumulator increments once for every for two quadrature states (X2) 
• '11' accumulator increments once for every for quadrature state (X4) 

13 Trigger signal is generated when accumulator decreases or retards. 
12 Trigger signal is generated when accumulator increases or advances. 
11 Trigger signal is generated when edge of index occurs. 
10 Trigger signal is generated when rolling under 0 to N-1 in modulo-N mode. 
9 Trigger signal is generated when rolling over N-1 to 0 in modulo-N mode. 
8 Trigger signal is generated when accumulator equals match register. 
7 Trigger signal is generated when accumulator equals zero. 
5 - 0 Reserved for future use. 



 28

6.2 Status Registers (reg.#4, reg.#12, reg.#20) 
32-bit register: 
 
31  30  29  28  27  26  25  24  23  22   21  20  19   18  17  16  15  14  13  12   11  10    9    8    7     6    5     4    3    2    1    0 
0 0 0 0 0 0 0 0  0 0               0 0 0 0 0 0 0 

 
     ‘0’ indicates unused or reserved bit which always returns ‘0’ when being read. 

 
 

Bit Group name Bit name   
31-24 UNUSED 31: unused31   
  30: unused30   
  29: unused29   
  28: unused28   
  27: unused27   
  26: unused26   
  25: unused25   
  24: unused24   
23 LAST DIRECTION INDICATOR 23: last_direction   
22-21 RESERVED 22: reserved22   
  21: reserved21   
20-14 EVENT DETECTED 20: retard_detected   
  19: advance_detected   
  18: index_detected   
  17: borrow_detected   
  16: carry_detected   
  15: match_detected   
  14: zero_detected   
13-7 LATCHED EVENT DETECTED 13: latched_retard_detected   
  12: latched_advance_detected   
  11: latched_index_detected   
  10: latched_borrow_detected   
  9: latched_carry_detected   
  8: latched_match_detected   
  7: latched_zero_detected   
6-0 RESERVED 6: reserved6   
  5: reserved5   
  4: reserved4   
  3: reserved3   
  2: reserved2   
  1: reserved1   
  0: reserved0   
 

 



 29

Description 

 
The following defines bits of the status registers: 
 
 Bit Status                                               

31-24 Unused 
23 Indicates the last counting direction 
22-21 Reserved for future use 
20 Retard of quadrature is detected 
19 Advance of quadrature is detected 
18 Index is detected 
17 Borrow is detected 
16 Carry is detected 
15 Internal counter reaching a value that corresponds to the Match register. 
14 Internal counter passing through zero. 
13 Latched value of bit 20 
12 Latched value of bit 19 
11 Latched value of bit 18 
10 Latched value of bit 17 
9 Latched value of bit 16 
8 Latched value of bit 15 
7 Latched value of bit 14 
6-0 Reserved for future use. 
 
Writing 1 to the Status bit that is set will clear that bit.  
Writing 0xFFFFFFFF to a Status register will clear all of its status bits to 0. 
 
 



 30

6.3 Miscellaneous Registers (reg.#7, reg.#15, reg.#23) 
This section describes the features associated with each of the following registers:   

•••• Command (Register #7) : Command Register 
Bit Description 
----------------------------------------------------------------------------------------------------- 
31-24 ROM identification (ROM_ID). These bits are read only and their values may vary 

between boards. 
23-7 Reserved. 
6 This bit is used to run or stop 33 MHz Time Stamp Counter (TS Counter). 
         0: Time Stamp counter is running. 
         1: Time Stamp counter stops at count 0. 
5 Bit 5 is used to cause the TS Counter to transfer to the Time Stamp Latch Register 

(TS Latch). Transition from 0 to 1 of this bit (write ‘0’ then write ‘1’) will generate 
a one-shot pulse that causes the transfer. (See Figure 7.1 Trigger and Time Stamp 
Circuit.) 

4 Bit 4 is used to initiate a software-capture-all which causes the TS Counter to 
transfer to the TS Latch and then causes all accumulators with captured enabled to 
transfer to the Output Latch. Transition from 0 to 1 of this bit (write ‘0’ then write 
‘1’) will generate a one-shot pulse that causes all the described transfers. (See 
Figure 7.1 Trigger and Time Stamp Circuit.) 

3-0 Reserved 
 

•••• TS Latch (Register #15) : Time Stamp Latch Register  
This register is used to hold the Time Stamp Output Latch value. When a trigger event 
occurs, the value of TS Counter will be transferred to TS Latch. 
Read: Return the 32-bit time stamp latched value 
Write (any value): Initiate a software-capture-all which causes the TS Counter to transfer to 
the TS Latch and then causes all accumulators with captured enabled to transfer to the 
Output Latch. It is equivalent to writing 0 then writing 1 to bit 4 of the Command register.  
 

•••• TS Counter (Register #23) : 33 MHz Time Stamp Counter 
This register is used to hold a 32-bit counter running at 33 MHz. 
Read: Return the current counter value 
Write (any value):  Initiate the transfer of the TS Counter to the Time Stamp Latch Register 
(TS Latch).  It is equivalent to writing 0 then writing 1 to bit 5 of the Command register. 
Note: This counter is based on the PCI bus’s 33.3333 MHz clock. One count is 
approximately equivalent to 30 nano-seconds. The actual clock frequency of each PC may 
vary. 
 

 
 
 



 31

6.4 Interrupt Registers (reg.#34, reg.#35) 
 

•••• Interrupt Control (Register #34)  (Read/Write) 
   Bit 31: Enable interrupt caused by FIFO half-full 
   Bit 30: Enable interrupt caused by trigger out signal 
  
 This register controls the Interrupt Logic to accept or ignore two input signals, “Encoder Trigger 

Out” signal and “FIFO Half-full” signal. See Figure 5.1 Block Diagram of PCI-3E. The Interrupt 
Logic generates “Interrupt Out” signal to the PCI bus and asserts bit 31 of the Interrupt Status 
register when it detects a signal on the enabled inputs. 

  
 Important note:  A new “Trigger Out” signal cannot be generated from an encoder channel until its 

pending trigger status is cleared. Writing 0xFFFFFFFF to all status registers right after  enabling the 
interrupts will clear any pending trigger status. 

 
 When either bit 30 or bit 31 is set using the PCI3E_WriteRegister function, the Status register for 

each encoder must also be cleared. 
 
 However, when using PCI3E_SetInterruptControl , the clearing of status registers is included in 

the function call. No additional action is needed to clear the status registers. 
 
•••• Interrupt Status (Register #35)  (Read/Write) 
   Bit 31: Interrupt occurred / Write ‘1’ to clear 
   Bit 30: FIFO half-full status bit 
 
 After an interrupt occurred, bit 31 must be cleared to lower the “Interrupt Out” signal on the PCI 

bus. 
 
 FIFO half-full status bit is a copy of bit 19 of the FIFO Status/Control (reg.#38). This bit can be used 

to determine the cause of interrupt if either bit 30 and bit 31 of the Interrupt Control (reg.#34) is set. 
 
 
 



 32

6.5 FIFO Registers (reg.#37, reg.#38, reg.#39) 
 

•••• FIFO ON/OFF (Register #37)  (Read/Write) 
   

Bit 8:  FIFO on-off 
   1- ON: Using FIFO 
   0- OFF: Not using FIFO 
 
 When the FIFO is turned on, all encoder counts with the time stamp will be stored in the FIFO for 

every “Encoder Trigger Out” signal. See Figure 5.1 Block Diagram of PCI-3E for the block 
diagram of the FIFO logic. The “Encoder Trigger Out” signal is tapped from the output of the OR 
gate whose inputs are from “trigger out” of all channels. See also 7 Trigger/Capture Feature. 

 
 The size of the FIFO is 1024 x 32-bit. This FIFO can store 204 records of encoder data. Each record 

consists of 4 encoder counts with a 32-bit timestamp. 
 
 Important note:  A new “Trigger Out” signal cannot be generated from an encoder channel until its 

pending trigger status is cleared. Writing 0xFFFFFFFF to all status registers right after  the FIFO is 
turned on will clear any pending trigger status. When a new “Encoder Trigger Out” signal is 
detected, the FIFO logic will store a new record in the FIFO and clear the status registers 
automatically. 

 
 When bit 8 is set using the PCI3E_WriteRegister function, the status register for each encoder must 

also be cleared. 
 
 However, when using PCI3E_EnableFIFOBuffer, the clearing of status registers is included in the 

function call. No additional action is needed to clear the status registers. 
 
 The FIFO can be used with polling method (checking the FIFO Status/Control (reg.#38) then 

writing/reading the FIFO Read (reg.#39)) or interrupt driven method.   
 
 Polling method:  

(1) Check the FIFO Status/Control (reg.#38) for the presence of data. 
(2) Read the FIFO Read (reg.#39). 
(3) Write the FIFO Read (reg.#39) with any value to update the FIFO Read for the next entry. 
(4) Repeat (2) and (3) until the FIFO is empty. 

  
  For the interrupt driven method, please refer to the following sections: 
  6.4 Interrupt Registers  
  8 Example Programs 
  9.3 User friendly functions / Interrupt Handling Group. 
 
 
 



 33

• FIFO Status/Control (Register #38)  (Read/Write) 
  Bit 20 ... bit 10: data_count(10..0)    --status (read only)   range: 00000000000 ~ 10000000000 
  Bit 9: empty                                --status (read only) 
  Bit 8: full                                      --status (read only) 
  Bit 1: init (clear FIFO)                --command (read/write) 
   1- reset 
   0- ready 
  Bit 0: Update the FIFO Read register to hold the next entry by writing 0 then writing 1 to this bit 
            --command (read/write) 
 
 When the FIFO is full (indicated by bit 8), no additional records will be stored. The application 

program should do the following steps. 
 

(1) Turn the FIFO off 
(2) Read all records or clear the FIFO. 

    
 Caution: After the FIFO is full, do not read the FIFO (using reg.#39) without turning OFF the FIFO. 

The FIFO reading will clear up some spaces in the FIFO but the order of entries inside a new record 
cannot be maintained. (See “Order in the FIFO” below) 

 
• FIFO Read (Register #39)  (Read/Write) 

Read       --- Returns an entry in the FIFO  
 Write any value   --- Updates this register to hold the next entry in the FIFO (Equivalent to 

writing 0 then writing 1 to bit 0 of FIFO Status/Control (Register #38)) 
 
• Order in the FIFO 
  Each record contains five 32-bit data as follows. 
 
 
                                         FIFO OUT     (reading from FIFO by the application program)  

 
 
record i 
 
 

Time � entry number 0 
CH0 encoder data � entry number 1 
CH1 encoder data � entry number 2 
CH2 encoder data � entry number 3 
4-bit input port data  � entry number 4  

 
 
record i+1 
 
 

Time � entry number 5 
CH0 encoder data � entry number 6 
CH1 encoder data � entry number 7 
CH2 encoder data � entry number 8 
4-bit input port data � entry number 9  

……… ……… ……… 
                                       FIFO IN                 (writing to FIFO by the firmware)  



 34

 Format of time entry 
 Bit 31~bit0: time ---------------------------from TS Latch register (Register #15) 
 
 Format of encoder data entry 

Bit 31: last direction------------------------from bit 23 of Status reg. 
Bit 30: latched_retard_detected-----------from bit 13 of Status reg. 
Bit 29: latched_advance_detected--------from bit 12 of Status reg. 
Bit 28: latched_index_detected-----------from bit 11 of Status reg. 
Bit 27: latched_borrow_detected---------from bit 10 of Status reg. 
Bit 26: latched_carry_detected------------from bit 9 of Status reg. 
Bit 25: latched_match_detected-----------from bit 8 of Status reg. 
Bit 24: latched_zero_detected-------------from bit 7 of Status reg. 
Bit 23~bit0: Encoder count----------------from bit 23 ~ bit 0 of Output Latch 

 
 Format of 4-bit input port data entry 
 Bit 31~4: 0x0000000 
 Bit 3: Input port bit 3------------------------from bit 3 of Input Port (Register #40)   
 Bit 2: Input port bit 2------------------------from bit 2 of Input Port (Register #40) 
 Bit 1: Input port bit 1----------------------- from bit 1 of Input Port (Register #40) 
 Bit 0: Input port bit 0----------------------- from bit 0 of Input Port (Register #40) 
 
 



 35

6.6 Digital Input Triggering Registers (reg.#27and reg.#28) 
 
• Triggering Control  (Register #27)  (Read/Write) 

Bit 31 ~ Bit 8: reserved 
Bit7: ctrl_trigger_at_rising_not_falling_edge_in3   ( 0 = falling edge, 1 = rising edge) 
Bit6: ctrl_trigger_at_rising_not_falling_edge_in2   ( 0 = falling edge, 1 = rising edge) 
Bit5: ctrl_trigger_at_rising_not_falling_edge_in1   ( 0 = falling edge, 1 = rising edge) 
Bit4: ctrl_trigger_at_rising_not_falling_edge_in0   ( 0 = falling edge, 1 = rising edge) 
Bit 3: ctrl_trigger_in3 
Bit 2: ctrl_trigger_in2 
Bit 1: ctrl_trigger_in1 
Bit 0: ctrl_trigger_in0 

 
  ctrl_invert_inX    (X = 0, 1, 2, 3) 

0: Asserted state is defined as the transition of inX input from logic high to logic low. 
1: Asserted state is defined as the transition of inX input from logic low to logic high. 

 
  ctrl_trigger_inX  (X = 0, 1, 2, 3) 

0: Disable trigger event detection. 
1: Enable trigger event detection. Trigger event occurs when the inX input entering asserted state. 

 
• Triggering Status  (Register #28)  (Read/Write) 
  Bit 31 ~ Bit 4: reserved 
  Bit 3: latched_in3_detected 
  Bit 2: latched_in2_detected 
  Bit 1: latched_in1_detected 
  Bit 0: latched_in0_detected 
 
  Bit 0, 1, 2, 3 Read:  0: No enabled trigger event detected. 
         1: Enabled trigger event detected. 
  Bit 0, 1, 2, 3 Write:  0: No effect. 
        1: Clear the detected event of that bit, if any. 
 
  When an enabled trigger event is detected, its “latched_inX_detected” bit will be set to ‘1’. 
  Software must clear the detected event by writing ‘1’ to its “latched_inX_detected” (X=0, 1, 2, 3), 

otherwise this bit cannot detect a new event. 
  
 When the FIFO is ON, these triggering status bits will be cleared automatically. 
 
 
 



 36

6.7 Data Logging and Input/Output Registers (reg.#30, reg.#31, reg.#40 ~ 
reg.#47) 

 
• Sampling rate multiplier (Register #30)  (Read/Write) 
  Holds a 32-bit sampling rate multiplier, “N”. See 7.3 Data Logging for details. 
 
• Sampling rate counter (Register #31)  (Read/Write) 

Read: 32- bit sampling rate counter. Each count is equal to (“N”+1) times 30 microseconds. 
  Write (any value): Reset count to ‘0’ when the acquisition is not in progress. 
  
• Input Port (Register #40)  (Read only) – Active low convention 

Bit 31 ~ Bit 4: reserved 
 Bit 3: Input Port – IN3 
 Bit 2: Input Port – IN2 
 Bit 1: Input Port – IN1 
 Bit 0: Input Port – IN0 
  
 0 = Logic HIGH at an input pin. (No connection or the input level is HIGH) 
 1 = Logic LOW at an input pin. (Connected to ground or the input level is LOW) 
 
 When nothing is connected, the voltage level at an input pin is pulled up to HIGH by a resistor. 
 
• Trigger Setup (Register #41)  (Read/Write) 

Bit 31: (r/w) 1 --- AND select, 0--- OR select 
  Bit 30 ~ Bit 12: reserved 
  Bit 11 ~ Bit 9: (r/w) Trigger setup code for IN3 see **NOTE 
  Bit 8 ~ Bit 6: (r/w) Trigger setup code for IN2 see **NOTE 
  Bit 5 ~ Bit 3: (r/w) Trigger setup code for IN1 see **NOTE 
  Bit 2 ~ Bit 0: (r/w) Trigger setup code for IN0 see **NOTE 
 
• Qualifier Setup (Register #42)  (Read/Write) 

Bit 31: (r/w) 1 --- AND select, 0--- OR select 
Bit 30 ~ Bit 12: reserved 
Bit 11 ~ Bit 9: (r/w) Qualifier setup code for IN3 see **NOTE 
Bit 8 ~ Bit 6: (r/w) Qualifier setup code for IN2 see **NOTE 
Bit 5 ~ Bit 3: (r/w) Qualifier setup code for IN1 see **NOTE 
Bit 2 ~ Bit 0: (r/w) Qualifier setup code for IN0 see **NOTE 
--------------------------------------------------------------------------------------- 
**NOTE: 3-Bit Trigger/Qualifier setup codes 
000: Never. (Ignore) 
001: Rising. Logic level at an input pin is changing from LOW to HIGH. 
010: Falling. Logic level at an input pin is changing from HIGH to LOW. 
011: Change. Logic level at an input pin is changing from its previous value. 
100: High. Logic level at an input pin is HIGH. 



 37

101: Logic level at an input pin is LOW. 
110: Unconditionally. (Always) 
111: Unconditionally. (Always) 
---------------------------------------------------------------------------------------- 

• Number of samples to collect (Register #43)  (Read/Write) 
  Number of samples to collect (32-bit) 
 
• Number of samples remaining to be collected (Register #44)  (Read only) 
  Number of samples remaining to be collected (32-bit) 
 
• Acquisition Control Register (Register #45) (Read/Write) 
 This register is used to start/stop acquisition. It also indicates the acquisition status. 
  
 Bit 31 ~ Bit 3: reserved 

Bit 2: (read only) Continuous mode in progress 
Bit 1: (read only) Acquisition has been triggered 
Bit 0: (r/w) Start|Stop acquisition 

 
• Output Port (Register #46)  (Read/Write) 

Bit 31 ~ Bit 4: reserved 
Bit 3: Output Port Bit 3 
Bit 2: Output Port Bit 2 
Bit 1: Output Port Bit 1 
Bit 0: Output Port Bit 0 

  
 0 = OFF (The OFF transistor isolates the output pin.) 
 1 = ON (The ON transistor connects the output pin to ground.) 
  
• Output Port Setup (Register #47)  (Read/Write) 

Bit 31 ~ Bit30: (r/w) Set the length of Trigger signal. 
 
           bit31    bit30 Length of Trigger signal 
   0 0      1 mS 
   0 1  200 µS 
   1 0    20 µS 
   1 1      5 µS   
 Bit 29 ~ Bit 4: reserved 

Bit 3: 0 --- OUT3 is bit 3 of reg_46 
  1 --- OUT3 is Combined Trigger Out signal 
Bit 2: 0 --- OUT2 is bit 2 of reg_46 
  1 --- OUT2 is Trigger Out signal from Encoder Channel 2 
Bit 1: 0 --- OUT1 is bit 1 of reg_46 
  1 --- OUT1 is Trigger Out signal from Encoder Channel 1 
Bit 0: 0 --- OUT0 is bit 0 of reg_46 
  1 --- OUT0 is Trigger Out signal from Encoder Channel 0 



 38

7 Trigger / Capture / Data Logging Feature 

7.1 Trigger Signal Generated by Encoders 
The PCI-3E is organized into encoder channels.  Each encoder channel may be programmed to 
recognize a variety of conditions (such as the counter passing through zero, or the counter being 
equal to the match register).  This recognition of conditions is achieved by setting trigger bits in 
the control register, (bit 7 to bit 13 of Control register). When a trigger bit for a condition is 
enabled within a given channel, that triggering channel generates a hardware signal that goes out 
of the channel; the triggers from all the channels are OR’ed together to form a capture signal called 
“Combined Trigger Out".   

 
This single capture signal goes into all the channels; each channel may be programmed, (bit 23 of 
Control register) to accept this signal (the channel is said to have “capture enabled”). When 
enabled, the capture signal causes a channel to transfer the contents of the accumulator (counter) to 
the output latch, without any software intervention.  Recall that in normal operation the host 
software must issue a write to the “Output Latch” register to cause the accumulator contents to be 
copied to the output latch; all that the triggering system provides is a way for this transfer to be 
done by hardware when a condition is recognized on a triggering channel. 
 
In order to facilitate analyzing or processing of encoder position data that require precise timing 
information, 33 MHz Time Stamp Counter (TS Counter) and Time Stamp Latch register (TS 
Latch) are incorporated into the triggering scheme. When a trigger signal is generated, the value of 
TS Counter is automatically latched to TS Latch register. 
 
 

Data Logging and I/OLogic Trigger Out

TS
C
O
U
N
T
E
R

One Shot (Command Register Bit 4)

To FIFO Buffer Logic

One Shot (Command Register Bit 5)

TS
L
A
T
C
H

Cause Transfer
From Counter to Latch

To Interrupt Logic

CH 0 Trigger Out
CH 1 Trigger Out

Digital Input Triggering Logic Trigger Out
CH 2 Trigger Out

To CH 0 Trigger In

To CH 1 Trigger In

To CH 2 Trigger In

 
 
   Figure 7.1 Trigger and Time Stamp Circuit 

 
 



 39

This triggering capability is most useful in the context of a data recording function.  In a data 
recording function the user may desire to have an ordered sequence of samples stored to a disk file.  
Most often this sequence is generated by storing samples according to a periodic time function, but 
the triggering function described above allows a sample to be captured as a function of the data 
itself – when one channel’s accumulator reaches zero, for instance, all channels may be 
programmed to capture the contents of their accumulators.  Successive triggers would then capture 
successive samples. 
 
So, the host software must be used to record a sequence of samples.  In the case of periodic 
sampling, the host would set up a software timer; upon expiration of the timer the host would issue 
a write to the “Output Latch” register to cause the accumulator contents to be copied to the output 
latch of all channels, then read the output latch of each of the channels in order, and write the data 
to a disk file. 
 
In the case of a triggered acquisition sequence (actually, a better term would be storage qualified 
sequence) the host must set up one or more channels to generate triggering conditions, and then set 
up one or more channels to respond to the triggers (capture enabled).  The host software is 
responsible for reading the output latch at the right moment, just after a capture has occurred. 
 
The way to accomplish a storage qualified acquisition is for the host software to poll the status 
register of that channel, looking for a capture detected bit to be set.  When a capture detected bit is 
found to be set, the host knows that a trigger has been generated, and data is waiting to be read in 
the output latches of the capture-enabled channels.  This data should be read and stored to disk 
file, and then the status should be cleared on the triggering channel by writing 0xFFFFFFFF to the 
status register.  Then the host may go back to polling the status register for captured event activity.  
Note that when collecting storage-qualified samples the host never issues a write to the “Output 
Latch” register; the hardware performs that function. 
 
 
Note: Additional usage of the “Combined Trigger Out” signal 
 
Trigger Out signals from Digital Input Triggering Logic and from Data Logging and Input/Output 
Logic are also included in the “Combined Trigger Out” signal.  

 
The “Combined Trigger Out” signal also goes to the FIFO buffer logic. The FIFO buffer logic 
stores the latched encoder counts, input port data and time stamp latch into the on-board FIFO 
buffers which can hold upto 204 records. (See 6.5 FIFO Registers.)  
 
The Interrupt Logic can be programmed to generate the PCI interrupt signal when the “Combined 
Trigger Out” is detected. (See 6.4 Interrupt Registers.) 
 



 40

7.2 Trigger Signal Generated by Digital inputs 
The PCI-3E may be programmed to generate a trigger signal for latching timestamp and encoder 
counts when rising or falling edge signals are detected at the 4-bit input port. This recognition of 
conditions is achieved by setting trigger bits of the Triggering Control Register (reg.#27). The 
generated trigger signal is OR’ed with other trigger signals from encoder channels. See Figure 5.1. 
 
The “capture enabled” bit (bit 23 of Control registers) of encoder channels must be programmed, 
to accept the Trigger In signal in order to latch new counts to the output latches.   
 
The FIFO buffer can be used to store the latched encoder counts, input port data and time stamp 
latch. (See 6.5 FIFO Registers.)  
 
The Interrupt Logic can be programmed to generate the PCI interrupt signal when the “Combined 
Trigger Out” is detected. (See 6.4 Interrupt Registers.) 

 
This triggering is suitable for collecting encoder data based on external signals. 
 
An example program is provided in the “ConsoleInterruptUsingDigitalInputTrigger” folder. (See 
8. Example Programs) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 41

7.3 Data Logging 
Overview 
The encoder channel processes encoder signals, A, B and I. The encoder channel updates encoder 
registers at the rate of 33 MHz. The application program can read the encoder registers anytime; 
however, Windows is not a real-time operating system. Attempting to use the software timer to 
achieve consistent register read intervals is not a viable approach. To attain consisitent register 
read intervals, the PCI-3E incorporates a programmable clock with the period of (N+1) * 30 
microseconds. The range of “N” is 0 ~ 4294967295.  This allows us to select a wide range of 
sampling period starting from 30 microseconds with 30-microsecond increment upto 128849 
seconds. The data logging is synchronized precisely to this programmable clock. The on-board 
FIFO buffer can store upto 204 samples. 
 
The data logging feature is based on two logic blocks. (See Figure 5.1 Block Diagram of PCI-3E.) 
 
(1) Data Logging and Input/Output Logic. 
(2) FIFO Buffer Logic. 
 
The “Data Logging and Input/Output Logic” generates “Trigger Out” signal which is used by the 
“FIFO Buffer Logic” as a write signal to store data into the FIFO buffer. 
 
Buffering 
The PCI-3E has on-board buffering, which allows the unit to buffer 204 samples. Each sample 
contains four 24-bit encoder counts, four 8-bit status data and a 32-bit time stamp. An interrupt 
can be generated when the buffer is half-full. See 6.5 FIFO Registers. 
 
Sampling Period 
Register 30 is used to set the sampling period for data logging. The sampling period is calculated 
by the following equation.  
 
Equation: The sampling period = (N+1) * 30 microsecond. 

Where, N is the value of the “sampling rate multiplier register” (reg.#30). 
 

Example:   How to find N for a 0.01 second sampling period.  
 
Calculation: N = ((0.01 second)*(1000000)/30) - 1 = 333.3333 – 1 = 332.3333 
    
Rounding: Round the result to the nearest integer:   N = 332 

 
 Verification:  The obtained sampling period = (332+1)* 30 microsecond = 0.00999 second. 
 

Note:  Since the resolution of sampling period is 30 microseconds, the obtained sampling period 
may differ from the desired value by +/- 30 microseconds. 
 
 



 42

Triggering 
The PCI-3E may be set up to look for a trigger before storing data via its data logging capability. 
The trigger is a generalized combination of digital input bit conditions. The combination of digital 
input conditions may include multiple digital input bits, and the conditions may be of different 
types (high, low, rising edge, falling edge, either edge, always, or ignore). The digital input 
combinations may be combined with an OR gate or an AND gate. There are commands to start and 
stop acquisitions; each new start of the acquisition system resets the trigger to begin looking for a 
new trigger. 
 
Storage Qualification 
Storage qualification is a digital logic analyzer term that describes when samples of data are 
stored. Like a logic analyzer, the PCI-3E may be set up to constantly scan its inputs for samples 
that meet a certain criteria, and then store only those samples. Storage qualification applies only 
after a trigger has occurred. For instance, the user might set the trigger to start data collection when 
a machine start signal is detected, and then desire to only store data when a certain sensor is active, 
indicating some portion of the machine's cycle. The data is stored on selected digital input 
conditions. It is similar to the options available for triggering explained in above “Triggering”. 
 
How to use the data logging feature. 
 
General steps are as follows. 
 
Step 1: Initialize PCI-3E. 
Step 2: Set the bit 23 (capture) of control registers to ‘1’. (Other bits of control registers must also   

be set to your desired settings.) 
Step 3: Select the sampling period. 
Step 4: Select the number of samples to be collected and the condition for triggering and storage 

qualification. 
Step 5: Clear the FIFO buffer. 
Step 6: Turn on the FIFO buffer. 
Step 7: Start acquisition. 
Step 8: Read data from the FIFO until the specified number of data are collected. 
Step 9: Display the collected data 
 
For each step, refer to the following registers or functions. 
 
Step 1: 9.4.43  PCI3E_Initialize  
 
Step 2: reg.#3, reg.#11, reg.#19 
 Use  9.4.57  PCI3E_SetControlMode with appropriate bit selection, or call the following 
functions. 

9.4.56  PCI3E_SetCaptureEnabled  
9.4.70  PCI3E_SetPresetValue 
9.4.59  PCI3E_SetCounterMode 
9.4.57  PCI3E_SetControlMode 
9.4.63  PCI3E_SetForward 
9.4.62  PCI3E_SetEnableIndex 



 43

9.4.61  PCI3E_SetEnableAccumulator 

 
Step 3: reg.#30 

9.4.72  PCI3E_SetSamplingRateMultiplier 

 
Step 4: reg.#41, reg.#42, reg.#43 

9.4.73  PCI3E_SetTimeBasedLogSettings  
 
Step 5: reg.#38 
 9.4.5   PCI3E_ClearFIFOBuffer 

 
Step 6: reg.#37 
 9.4.7   PCI3E_EnableFIFOBuffer 

 
Step 7: reg.#45 
 9.4.82  PCI3E_StartAcquisition  
 
Step 8: reg.#44, reg.#39 
 9.4.16  PCI3E_GetFIFOBufferCount 

 9.4.46  PCI3E_ReadFIFOBufferStruct, or 
 9.4.45  PCI3E_ReadFIFOBuffer 

 
Step 9: Display the collected data (User defined function.) 
 

 

The complete C source codes are provided in the “ConsoleTimeBasedDataLogging” folder. (See 8. 
Example Programs) 



 44

8 Example Programs 

The following example programs are provided.  These programs will be stored at C:\Program 

Files\PCI-3E\Source  after running PCI3ESetup.EXE.  All programs are written in C except VB 
Demo (Visual Basic). 

 

 
 

Source Folder 
 

 
Description 

C Hello World 
(A minimum program) 

This example illustrates how to initialize 
a PCI-3E card and perform basic 
configuration.  It displays the current 
encoder counter value to screen as the 
encoder changes position. 

ConsoleFIFOPolling 
(Using polling method for FIFO reading) 

This example initializes a PCI-3E card 
and polls the FIFO buffer until a 
predefined number of records (10) have 
been read.  You may modify the demo to 
read a different number of records. 

ConsoleInterruptLogger  
(PCI-3E Interrupt/FIFO Demo) 

This example initializes a PCI-3E card 
and provides a menu selection whereby a 
user may enable or disable trigger-out 
and half-full interrupts.  As the user 
turns an encoder and interrupts are 
generated the console displays the time, 
counts for each encoder channel and 
input port register value. 

ConsoleInterruptLogger_EncoderTriggerOut 
(Using Encoder Trigger-Out Signal Interrupt) 

This example initializes a PCI-3E card 
and automatically registers an interrupt 
handler that will display the time, counts 
for each encoder channel and input port 
register value as interrupts are generated.  
Interrupts are set to be generated each 
time an index signal is detected. 

ConsoleInterruptLogger_FIFOHalfFull 
(Using FIFO Half-Full Interrupt) 

This example initializes a PCI-3E card 
and automatically registers an interrupt 
handler that will display the time, counts 
for each encoder channel and input port 
register values after the internal FIFO 
buffer has reached half full. 



 45

 

ConsoleInterruptUsingDigitalInputTrigger 
(Using Digital Input Trigger to Generate 
Interrupt) 

This example initializes a PCI-3E card 
and automatically registers an interrupt 
handler that will display the time, counts 
for each encoder channel and input port 
register value as interrupts are generated.  
Interrupts are set to be generated each 
time a falling edge on input 0 of I/O port 
is detected. 

ConsoleTimeBasedDataLogging 
(Using Time-based Data Logging) 

This example illustrates how to use the 
data logging feature of the PCI-3E card. 

VBDemo 
(Demonstrating features of the PCI-3E) 

The PCI-3E VB Demo provides an easy 
to use graphical interface. The user may 
configure encoder channels and perform 
event and time base data logging. 

 
Programming: 
You can use any of the supplied source code as part of your own control software, but we 
make no guarantees on any part of it. 

 
 

 
  
 
 
 
 
 



 46

9 Function Calls 
 

User applications may utilize the PCI-3E by calling provided functions in the PCI-3E’s Dynamic 
Link Library (DLL). Function calls are categorized into 3 groups as follows. 
 
• Basic functions 
• PCI-3E card information functions 
• User friendly functions 

 



 47

9.1 Basic functions (5 functions) 
 

After understanding the meanings and functions of the 6 registers in each Channel Group, 
advanced users can set up and access PCI-3E with just five basic function calls. 
 
PCI Initalizing (important) 
 
9.4.43  PCI3E_Initialize 
9.4.2   PCI3E_CardCount 
9.4.81  PCI3E_Shutdown 
 

Registers Read/Write (important)  (Access by device number and register number) 
 
9.4.50  PCI3E_ReadRegister 
9.4.86  PCI3E_WriteRegister 

---------------------------------------------------------------------------------------------------------------- 



 48

9.2 PCI-3E card information functions (3 functions) 
Three functions are provided for acquiring information related to PCI-3E card. 
 
Functions to get PCI-3E card information (optional). 
 
9.4.42  PCI3E_GetVersion 
9.4.25  PCI3E_GetROM_ID 
9.4.30  PCI3E_GetSlotNumber 

 
-------------------------------------------------------------------------------------------------------------------- 

 



 49

9.3 User friendly functions (78 functions) 
 

To facilitate programming with high readability, user friendly functions named with their features 
have been provided. Please note that advanced users can substitute all user friendly functions by 
reading/writing specific registers. A user friendly function that changes only a specific bit or bits 
of a register preserves value of other bits by writing back with the same value. 
 
-------------------------------------------------------------------------------------------------------------------- 
 
Registers Read/Write Group : (Access by device number and encoder number) 

  

Register Name Write functions Read functions 
Preset 9.4.70  PCI3E_SetPresetValue  9.4.24  PCI3E_GetPresetValue  

Output Latch 9.4.10  PCI3E_GetCount  (*Write & Read) 9.4.48  PCI3E_ReadOutputLatch (**)  

Match 9.4.66  PCI3E_SetMatch  9.4.20  PCI3E_GetMatch  

Control 9.4.57  PCI3E_SetControlMode  9.4.9   PCI3E_GetControlMode  

Status  9.4.3   PCI3E_ClearCapturedStatus  9.4.31  PCI3E_GetStatus  

Reset 9.4.54  PCI3E_ResetCount  N/A 
Transfer Preset 9.4.44  PCI3E_PresetCount  N/A 

 
 

Overview 
Functions in this group read or write specific registers of a selected channel. Functions under 
“Write functions” are equivalent to PCI3E_WriteRegister , but using device number and encoder 
number as parameters for accessing registers. Also, functions under “Read functions” are 
equivalent to PCI3E_ReadRegister , but using device number and encoder number for accessing 
registers. Encoder number is equivalent to channel number. Also note the following: 
 
* Write & Read  
PCI3E_GetCount , first, writes to Output Latch register to transfer the value from the internal 
counter to the Output Latch register. Then, it immediately reads the Output Latch register to 
acquire the just transferred value. Use this function as a convenient way to get updated count of 
encoders when not using the trigger / capture feature. 
 
** 
When using the trigger/capture feature to transfer the internal counter value to the Ouput Latch 
register, use the PCI3E_ReadOutputLatch  function to simply read the last latched counter value. 

 
--------------------------------------------------------------------------------------------------------------------- 
 



 50

Counter Set-up Group 
 

Write functions Read functions 
9.4.59  PCI3E_SetCounterMode  9.4.11 PCI3E_GetCounterMode  

9.4.67  PCI3E_SetMultiplier  9.4.21  PCI3E_GetMultiplier  

9.4.63  PCI3E_SetForward  9.4.17  PCI3E_GetForward  

9.4.70  PCI3E_SetPresetValue (***)  9.4.24  PCI3E_GetPresetValue (***)  

9.4.61  PCI3E_SetEnableAccumulator  9.4.14  PCI3E_GetEnableAccumulator  

 
Overview 
Functions in this group will help you set up the counter mode to match your system. Normal step 
involves calling PCI3E_SetCounterMode , PCI3E_SetMultiplier  and PCI3E_SetForward . If a 
counter mode other than ‘simple 24 bit counter’ is selected, PCI3E_SetPresetValue  must be 
called to specify preset value. Call PCI3E_SetEnableAccumulator  to start the internal counter.  
 
Function PCI3E_Get...  under “Read functions” may be used to verify their PCI3E_Set... 

counterparts. 
 
Note: *** These functions also belong to Registers Read/Write Group. 
 
---------------------------------------------------------------------------------------------------------------------- 
 
Index Set-up Group  
 

Write functions Read functions 
9.4.69  PCI3E_SetPresetOnIndex  9.4.23  PCI3E_GetPresetOnIndex  

9.4.65  PCI3E_SetInvertIndex  9.4.19  PCI3E_GetInvertIndex  

9.4.62  PCI3E_SetEnableIndex  9.4.15  PCI3E_GetEnableIndex  

 
Overview 
If index is required for resetting or presetting counter value, functions in this group should be 
called. PCI3E_SetPresetOnIndex  will determine the action when index signal is detected, either 
resetting counter to 0 or presetting counter value equal to the value in preset register. 
PCI3E_SetInvertIndex  facilitates polarity changing of index signal. Call 
PCI3E_SetEnableIndex  to start watching for index signal. 
 
Function PCI3E_Get...  under “Read functions” may be used to verify their PCI3E_Set... 

counterparts. 
 
---------------------------------------------------------------------------------------------------------------------- 

 



 51

Count Data Handling Group 
 

Write functions Read functions 
9.4.10  PCI3E_GetCount (***)  9.4.48  PCI3E_ReadOutputLatch (***)  

9.4.54  PCI3E_ResetCount (***)   

9.4.44  PCI3E_PesetCount (***)   

9.4.58  PCI3E_SetCount  

 9.4.1   PCI3E_CaptureTimeAndCounts 

 9.4.51  PCI3E_ReadTimeAndCounts 

 
Overview 
After PCI3E_SetEnableAccumulator  is called, the internal counter will be updated continuously 
based on signals input into A, B and Index pins. The internal counter may be read directly using 
the PCI3E_ReadRegister function (reg.#5, reg.#13, reg.#21).  The Output Latch register is used 
to relay the value of internal counter to external interface. To get the count value, two steps are 
needed. First, the Output Latch register must be written in order to transfer value from the internal 
counter to the Output Latch register. Second, the Output Latch register is read to retrieve the 
transferred value.  These two steps are combined in PCI3E_GetCount function . This function is 
recommended when not using trigger / capture feature.  PCI3E_ReadOutputLatch  is normally 
called when the trigger / latch feature is in use. It’s because a trigger event will automatically 
transfer the count value from the internal counter to the Output Latch register. For a detailed 
explanation, please refer to chapter 7 ‘Trigger / Capture / Data Logging Feature’. 
 
PCI3E_ResetCount  or PCI3E_PresetCount  forces internal counter’s value to zero or the same as 
Preset register’s respectively.  
 
PCI3E_SetCount  forces internal counter’s value to a specified value without permanently 
changing the Preset register. In fact, PCI3E_SetCount  utilizes Preset register for transferring data 
to the internal counter, but the original value of Preset register is restored at the end of function 
call.  When writing an application that always watches for changing of value of Preset register, the 
programmer must be aware of this temporary change of value. 
 
PCI3E_ReadTimeAndCounts  simply reads the TimeStamp Latch and each of the encoder’s Output 
Latch while PCI3E_CaptureTimeAndCounts  causes a synchronized capture of the TimeStamp 
counter and all channel accumulators that have captured enabled set true.   
 
Note: *** These functions also belong to Registers Read/Write Group. 
 
---------------------------------------------------------------------------------------------------------------------- 
 



 52

Time Stamp Group  
 

Write functions Read functions 
 9.4.52  PCI3E_ReadTimeStamp  
9.4.55  PCI3E_ResetTimeStamp  
9.4.34  PCI3E_GetTimeStamp  

 
Overview 
PCI3E_ReadTimeStamp  simply reads the Time Stamp Latch without causing the Time Stamp 
Counter to be transferred to the Time Stamp Latch. PCI3E_ResetTimeStamp  sets the Time Stamp 
Counter value to zero.  PCI3E_GetTimeStamp  writes to the Command Register which causes the 
Time Stamp Counter to be latched to the Time Stamp Latch and then reads the Time Stamp Latch.   
 
--------------------------------------------------------------------------------------------------------------------- 
 
Trigger/Capture Feature Group 
 
Capture Functions 

Write functions Read functions 
9.4.56  PCI3E_SetCaptureEnabled 9.4.8   PCI3E_GetCaptureEnabled 

 
Trigger Functions 

Write functions Read functions 
9.4.66  PCI3E_SetMatch (***)  9.4.20  PCI3E_GetMatch (***)  

9.4.75  PCI3E_SetTriggerOnIncrease 9.4.36  PCI3E_GetTriggerOnIncrease 

9.4.76  PCI3E_SetTriggerOnIndex 9.4.37  PCI3E_GetTriggerOnIndex 

9.4.77  PCI3E_SetTriggerOnMatch 9.4.38  PCI3E_GetTriggerOnMatch 

9.4.71  PCI3E_SetTriggerOnDecrease 9.4.35  PCI3E_GetTriggerOnDecrease 

9.4.78  PCI3E_SetTriggerOnRollover 9.4.39  PCI3E_GetTriggerOnRollover 

9.4.79  PCI3E_SetTriggerOnRollunder 9.4.40  PCI3E_GetTriggerOnRollunder 

9.4.80  PCI3E_SetTriggerOnZero 9.4.41  PCI3E_GetTriggerOnZero 

9.4.3   PCI3E_ClearCapturedStatus (***)  9.4.31  PCI3E_GetStatus (***) 
9.4.32  PCI3E_GetStatusEX 

 
Overview 
An encoder channel may be configured to generate a trigger signal when various conditions are 
met.   This trigger signal is forwarded to all encoder channels. If a channel has capture enabled, it 
will then transfer the internal counter value to the Output Latch register.  The trigger signal will 
also transfer the Time Stamp Counter to the Time Stamp Latch regardless of any channel having 
capture enabled. 
 
Function PCI3E_Get...  under “Read functions” may be used to verify their PCI3E_Set... 

counterparts. Please refer to section “Trigger/Capture Feature” and definitions of each function in 
this group. 



 53

Note: *** These functions also belong to Registers Read/Write Group. 
---------------------------------------------------------------------------------------------------------------------- 
 
Interrupt Handling Group 
 
9.4.18  PCI3E_GetInterruptControl  9.4.64  PCI3E_SetInterruptControl 
9.4.53  PCI3E_RegisterInterruptHandler 9.4.84  
PCI3E_UnRegisterInterruptHandler  
 
Overview 
Four functions are provided for setup and control of interrupts related to the PCI-3E card. Use 
PCI3E_RegisterInterruptHandler  to register your interrupt handler function before enabling 
the interrupt using PCI3E_SetInterruptControl . PCI3E_GetInterruptControl  gets the current 
setting of two available interrupts, FIFO Half-Full interrupt and Encoder Trigger-Out interrupt. 
PCI3E_UnRegisterInterruptHandler  is used to remove a registered interrupt handler function. 

 
--------------------------------------------------------------------------------------------------------------------- 
 
First-In-First-Out (FIFO) Buffer Handling Group 
 
9.4.5   PCI3E_ClearFIFOBuffer 
9.4.6   PCI3E_DisableFIFOBuffer 
9.4.7   PCI3E_EnableFIFOBuffer 
9.4.16  PCI3E_GetFIFOBufferCount 
9.4.45  PCI3E_ReadFIFOBuffer 
9.4.46  PCI3E_ReadFIFOBufferStruct 

 
Overview 
Five functions are provided that support the FIFO buffering feature related to PCI-3E card. 
The FIFO can be enabled using PCI3E_EnableFIFOBuffer . The PCI3E_GetFIFOBufferCount  
returns the number of records currently stored in the FIFO buffer. The FIFO buffer can hold up to 
204 records. Each record consists of 5 entries. For details of the FIFO structure please see 6.5 
FIFO Registers. PCI3E_ClearFIFOBuffer  resets the FIFO buffer. PCI3E_ReadFIFOBuffer  or 
PCI3E_ReadFIFOBufferStruct  is used to read stored records in the FIFO buffer. 
PCI3E_DisableFIFOBuffer  disables the FIFO feature. 
 
--------------------------------------------------------------------------------------------------------------------- 
 
Digital Input Triggering Group 
 
9.4.60  PCI3E_SetDigitalInputTriggerConfig 
9.4.12  PCI3E_GetDigitalInputTriggerConfig 
9.4.4   PCI3E_ClearDigitalInputTriggerStatus 
9.4.13  PCI3E_GetDigitalInputTriggerStatus 

 
Overview 
Digital Input Triggering feature is implemented as a quick and easy way to capture encoder counts 
along with time stamp based on the rising or falling edge of external digital inputs. When the 
specified edge is detected on an input pin, the status of that input pin is set and the encoder counts 



 54

with time stamp are latched to the Output Latch registers(reg.#1, reg.#9, and reg.#17) and the Time 
Stamp Latch register (reg.#15). There are four input pins. Each input pin has its own status bit and 
works dependently. The status bit must be cleared using 
PCI3E_ClearDigitalInputTriggerStatus  before the same pin can be used to detect the trigger 
signal. However, the status bits can also be cleared automatically when the FIFO buffer is enabled 
by PCI3E_EnableFIFOBuffer . While the FIFO buffer is enabled, the captured encoder counts and 
the time stamp are also stored in the FIFO. 

 
--------------------------------------------------------------------------------------------------------------------- 
 
Data Logging and Input/Output Group 
 
9.4.71  PCI3E_SetSamplesToCollect  9.4.27  PCI3E_GetSamplesToCollect 
9.4.72  PCI3E_SetSamplingRateMultiplier 9.4.29  
PCI3E_GetSamplingRateMultiplier 
9.4.73  PCI3E_SetTimeBasedLogSettings 9.4.33  PCI3E_GetTimeBasedLogSettings 
9.4.82  PCI3E_StartAcquisition   9.4.83  PCI3E_StopAcquisition  
9.4.68  PCI3E_SetOutputPortConfig  9.4.22  PCI3E_GetOutputPortConfig 
9.4.85  PCI3E_WriteOutputPortRegister 9.4.49  PCI3E_ReadOutputPortRegister 
        9.4.47  PCI3E_ReadInputPortRegister  
                                          9.4.28  PCI3E_GetSamplingRateCounter 
       9.4.26  PCI3E_GetSamplesRemaining 

 
Overview 
PCI3E_SetSamplingRateMultiplier  sets the 32 bit sampling rate multiplier (N) which is used to 
determine the sampling period. The data logging is synchronized precisely to this sampling period. 
PCI3E_SetTimeBasedLogSettings  determines the input condition that must be satisfied in order 
to start a data acquisition.  Once the acquisition is started, this function also evaluates the input 
condition at each sampling period to determine if the data should be stored or discarded. 
PCI3E_SetSamplesToCollect  sets the number of samples to be collected when an acquisition is 
started. PCI3E_StartAcquisition  starts the acquisition. The data acquisition will stop once the 
specified number of data has been reached. PCI3E_StopAcquisition  can be used to abort the 
acquisition in progress. During the data acquisition, PCI3E_GetSamplesRemaining  can be used to 
retrieve the number of samples remaining to be collected. 
       
PCI3E_ReadInputPortRegister  returns the value stored in the input port register.  
PCI3E_WriteOutputPortRegister  sets the value stored in the output port register. 
PCI3E_ReadOutputPortRegister  read back the valued stored in the output port register. 
PCI3E_SetOutputPortConfig  is used to configure the output port setup. The output port pins 
may be driven by the output port register or trigger out signals. If the trigger out signals are used to 
drive the output port, then the length of the output trigger signal may also be specified. 
PCI3E_GetSamplesToCollect , PCI3E_GetSamplingRateMultiplier , 
PCI3E_GetTimeBasedLogSettings , PCI3E_GetOutputPortConfig  retrieve values of each 
settings. PCI3E_GetSamplingRateCounter  retrieves the current value of the sampling rate 
counter.  
  
--------------------------------------------------------------------------------------------------------------------- 

 



 55

9.4 Function Definitions 

9.4.1 PCI3E_CaptureTimeAndCounts 
Description: 
This function causes a synchronized capture of the TimeStamp counter and all channel 
accumulators which have captured enabled set true.  Note: the ulCounts  parameter of this 
function is pointer to an array of 3 unsigned longs.  Each item in the array will contain a channel’s 
output latch count value. 
   
C Language Function Prototype: 
int _stdcall PCI3E_CaptureTimeAndCounts(short iDevi ceNo, unsigned long 
*pulCounts, unsigned long *pulTimeStamp); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulCounts : see description above. 
pulTimeStamp : in out parameter containing the TimeStamp value. 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulCounts[3] = {0, 0, 0}; 
unsigned long ulTimeStamp = 0; 
iResult = PCI3E_CaptureTimeAndCounts(iDeviceNo, ulC ounts, &ulTimeStamp); 
if ( iResult != S_OK ){ // Handle error...} 
 

VB Language Function Declaration: 
Public Declare Function PCI3E_CaptureTimeAndCounts Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pulCounts As Long, ByRe f pulTimeStamp As Long) As 
Long 

 

Example VB Usage: 
Dim errCode  As Long 
Dim iDeviceNo  As Integer 
Dim lCounts(2)  As Long 
Dim lTimeStamp As Long 
 
iDeviceNo = 0   

 
errCode = PCI3E_CaptureTimeAndCounts(iDeviceNo, lCo unts(0), lTimeStamp) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 56

9.4.2 PCI3E_CardCount 
 

Description: 
This function returns the number of PCI-3E cards detected on the PCI bus.  The value returned 
should be the same value as returned in the in-out piDeviceCount  parameter of the 
PCI3E_Initialize  function. 
 
C Language Function Prototype: 
int _stdcall PCI3E_CardCount(); 

 
Returns:   
See description above. 
 
Parameters: 
None 
  
Example C Usage: 
short iCards = PCI3E_CardCount(); 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_CardCount Lib "USD_PC I_3E.dll" () As Long 

 
Example VB Usage: 
Dim iCards As Integer 
iCards = PCI3E_CardCount() 



 57

9.4.3 PCI3E_ClearCapturedStatus 
Description: 
This function clears the captured event status by writing 0xFFFFFFFF into the status register. 
 
Note: Refer to section 6.2 Status Registers. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ClearCapturedStatus(short iDevic eNo, short iEncoder); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0; 
 
iResult = PCI3E_ClearCapturedStatus(iDeviceNo, iEnc oder); 
if ( iResult != S_OK ) { // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ClearCapturedStatus L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer) As  Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_ClearCapturedStatus(iDeviceNo, iEnc oder) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 58

9.4.4 PCI3E_ClearDigitalInputTriggerStatus 
Description: 
This function clears the digital input detected status for each input by writing 0xFFFFFFFF to the 
digital input status register. 
 
Note: Refer to section 6.6 Digital Input Triggering Registers. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ClearDigitalInputTriggerStatus(s hort iDeviceNo); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
 
iResult = PCI3E_ClearDigitalInputTriggerStatus(iDev iceNo); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ClearDigitalInputTrig gerStatus Lib 
"USD_PCI_3E.dll" (ByVal iDeviceNo As Integer) As Lo ng 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0 
 
errCode = PCI3E_ClearDigitalInputTriggerStatus(iDev iceNo) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 59

9.4.5 PCI3E_ClearFIFOBuffer 
Description: 
This function flushes the FIFO buffer. 
   
C Language Function Prototype: 
int _stdcall PCI3E_ClearFIFOBuffer(short iDeviceNo) ; 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
 
iResult = PCI3E_ClearFIFOBuffer(iDeviceNo); 
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_ClearFIFOBuffer Lib " USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0 
 
errCode = PCI3E_ClearFIFOBuffer (iDeviceNo) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 60

9.4.6 PCI3E_DisableFIFOBuffer 
Description: 
This function disables the FIFO buffering feature and disables auto clearing of captured event 
status and digital input trigger status. 
   
C Language Function Prototype: 
int _stdcall PCI3E_DisableFIFOBuffer(short iDeviceN o); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
 
iResult = PCI3E_DisableFIFOBuffer(iDeviceNo); 
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_DisableFIFOBuffer Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0   
errCode = PCI3E_DisableFIFOBuffer (iDeviceNo) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 61

9.4.7 PCI3E_ EnableFIFOBuffer 
Description: 
This function enables the FIFO buffering feature and enables auto clearing of captured event status 
and digital input trigger status. 
 
C Language Function Prototype: 
int _stdcall PCI3E_EnableFIFOBuffer(short iDeviceNo ); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
 
iResult = PCI3E_EnableFIFOBuffer(iDeviceNo); 
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_EnableFIFOBuffer Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0   
 
errCode = PCI3E_EnableFIFOBuffer(iDeviceNo) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 62

9.4.8 PCI3E_GetCaptureEnabled 
Description: 
This function retrieves a boolean value that identifies if trigger_in causes a transfer from 
accumulator (counter) to output. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetCaptureEnabled(short iDeviceN o, short iEncoder, BOOL 
*pbVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : inout parameter that indentifies if the capture feature is enabled. 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0; 
BOOL bVal = 0;  
 
iResult = PCI3E_GetCaptureEnabled(iDeviceNo, iEncod er, &bVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetCaptureEnabled Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetCaptureEnabled(iDeviceNo, iEncod er, bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 63

9.4.9 PCI3E_GetControlMode 
Description: 
This function retrieves a 32 bit value from the control register.  This value is used to control the 
operation of a channel.  See section 6.1 Control Registers 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetControlMode(short iDeviceNo, short iEncoder, unsigned 
long *pulVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pulVal : 32 bit in-out parameter containing the control mode.  

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
unsigned long ulVal = 0;  
 
iResult = PCI3E_GetControlMode(iDeviceNo, iEncoder,  &ulVal ); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetControlMode Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pulVal As Long) As Long 
 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetControlMode(iDeviceNo, iEncoder,  lVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 64

9.4.10 PCI3E_GetCount 
Description: 
This function retrieves the count value. 
Notes: This function performs the following two steps. 
(1) Write to Output Latch registers (reg.#1, reg.#9, or reg.#17 based on channel selected). This 
action will transfer the value from internal counter register to the Output Latch registers. 
(2) Read from Output Latch registers (reg.#1, reg.#9, or reg.#17 based on channel selected). The 
result of this read is the updated value from the Output Latch register which is passed to pulVal. 
 
Caveats: This PCI3E_GetCount is a convenient function to easily get encoder counts from PCI-
3E. However, if you want to use triggering features of PCI-3E to transfer data from internal 
counter to Output Latch register, you should use PCI3E_ReadRegister instead of 
PCI3E_GetCount.  In this case, using PCI3E_GetCount to read data will result in overwriting the 
output latch count value when a trigger event occurs. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetCount(short iDeviceNo, short iEncoder, unsigned long 
*pulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pulVal : in/out parameter that will receive the encoder count value. 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
unsigned long ulVal = 0; 
 
iResult = PCI3E_GetCount(iDeviceNo, iEncoder, &ulVa l); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetCount Lib "USD_PCI _3E.dll" (ByVal iDeviceNo As 
Integer, ByVal iEncoder As Integer, ByRef pulVal As  Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 



 65

 
errCode = PCI3E_GetCount(iDeviceNo, iEncoder, lVal)  
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 66

9.4.11 PCI3E_GetCounterMode 
Description: 
This function retrieves a control counter mode that governs the counter behavior and limits.  See 
parameters sections for description of the possible counter modes. 

 
C Language Function Prototype: 
int _stdcall PCI3E_GetCounterMode(short iDeviceNo, short iEncoder, short 
*piVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
piVal : in-out parameter containing the counter mode. 

0 = acc. acts like a 24 bit counter  
1 = acc. uses preset register in range-limit mode  
2 = acc. uses preset register in non-recycle mode  

   3 = acc. uses preset register in modulo-N mode. 
  See 6.1 Control Registers for explanation of modes. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
short iVal = 0;  
 
iResult = PCI3E_GetControlMode(iDeviceNo, iEncoder,  &iVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetCounterMode Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref piVal As Integer) As 
Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim iVal As Integer 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetCounterMode(iDeviceNo, iEncoder,  iVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 67

9.4.12 PCI3E_GetDigitalInputTriggerConfig 
Description: 
This function retrieves the digital input trigger configuration settings. 
 
Note: Refer to section 6.6 Digital Input Triggering Registers. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetDigitalInputTriggerConfig(sho rt iDeviceNo, BOOL 
*pbEnableTrigger, BOOL *pbTriggerOnRisingEdge); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pbEnableTrigger : an array of four booleans which determine if input signals can generate a 
trigger out signal. 
pbTriggerOnRisingEdge : an array of four booleans which determine the type of tigger signal, 
rising or falling edge.  1 = rising edge, 0 = falling edge. 
 
Example C Usage: 
int iResult = S_OK; 
int iDeviceNo = 0; 
BOOL bEnableTrigger[4] = {FALSE, FALSE, FALSE, FALS E}; 
BOOL bTriggerOnRisingEdge[4] = {FALSE, FALSE, FALSE , FALSE}; 
 
iResult = PCI3E_GetDigitalInputTriggerConfig(iDevic eNo, bEnableTrigger, 

bTriggerOnRisingEdge); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetDigitalInputTrigge rConfig Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef bEnableTrigger A s Long, ByRef 
bTriggerOnRisingEdge As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bEnableTrigger(3) As Long 
Dim bTriggerOnRisingEdge (3) As Long 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetDigitalInputTriggerConfig  (iDeviceNo, bEnableTrigger(0), 

bTriggerOnRisingEdge(0)) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 68

9.4.13 PCI3E_GetDigitalInputTriggerStatus 
Description: 
This function retrieves the digital input trigger event detected status. 
 
Note: Refer to section 6.6 Digital Input Triggering Registers. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetDigitalInputTriggerStatus(sho rt iDeviceNo, BOOL *pbVal); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pbVal : an array of four booleans that identifying if input signals have been detected. 
 
Example C Usage: 
int iResult = S_OK; 
int iDeviceNo = 0; 
 
BOOL bVal[4] = {FALSE, FALSE, FALSE, FALSE};  
 
iResult = PCI3E_GetDigitalInputTriggerStatus(iDevic eNo, bVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetDigitalInputTrigge rStatus Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef pbVal As Long) A s Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bVal(3) As Long 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetDigitalInputTriggerStatus(iDevic eNo, bVal(0)) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 69

9.4.14 PCI3E_GetEnableAccumulator 
Description: 
This function retrieves a boolean value that indicates whether the master enable for accumulator is 
set, (must be set to true to count). 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetEnableAccumulator(short iDevi ceNo, short iEncoder, BOOL 
*pbVal); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter identifying whether the counter is enabled. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = FALSE;  
 
iResult = PCI3E_GetEnableAccumulator(iDeviceNo, iEn coder, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetEnableAccumulator Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetEnableAccumulator(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 70

9.4.15 PCI3E_GetEnableIndex 
Description: 
This function retrieves a boolean value that indicates whether index detection is enabled.  When 
enabled, you can use the PCI3E_SetPresetOnIndex to determine how to respond to an index 
signal. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetEnableIndex(short iDeviceNo, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter identifying whether the index is enabled. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = FALSE;  
 
iResult = PCI3E_GetEnableIndex(iDeviceNo, iEncoder,  &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetEnableIndex Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
   
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetEnableIndex(iDeviceNo, iEncoder,  bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 71

9.4.16 PCI3E_GetFIFOBufferCount 
Description: 
This function retrieves the number of records currently stored in the FIFO buffer. 
   
C Language Function Prototype: 
int _stdcall PCI3E_GetFIFOBufferCount(short iDevice No, short *piVal); 

 
Returns:   
Result code as an integer:  This function will return FIFO_BUFFER_FULL if the FIFO buffer is 
full when the call is made. See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
piVal:  contains the number of records stored in the FIFO buffer. 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iVal = 0; 
 
iResult = PCI3E_GetFIFOBufferCount(iDeviceNo, &iVal ); 
if ( iResult != S_OK ){ // Handle error...} 
 

VB Language Function Declaration: 
Public Declare Function PCI3E_GetFIFOBufferCount Li b "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef piVal As Integer) As Lo ng 

 
Example VB Usage: 
Dim errCode   As Long 
Dim iDeviceNo As Integer 
Dim iVal    As Integer 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetFIFOBufferCount(iDeviceNo, iVal)  
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 72

9.4.17 PCI3E_GetForward 
Description: 
This function retrieves a boolean value that indicates whether the B input of quadrature signal is 
inverted.  1 = inverted, 0 = not inverted. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetForward(short iDeviceNo, shor t iEncoder, BOOL *pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter identifying if the B signal is inverted or not. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = FALSE;  
 
iResult = PCI3E_GetForward(iDeviceNo, iEncoder, &bV al); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetForward Lib "USD_P CI_3E.dll" (ByVal iDeviceNo 
As Integer, ByVal iEncoder As Integer, ByRef pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetForward(iDeviceNo, iEncoder, bVa l) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 73

9.4.18 PCI3E_GetInterruptControl 
Description: 
This function gets the current enable state of the FIFO Half-Full interrupt and the Trigger-Out 
interrupt.   
 
Note: if the FIFO Half-Full interrupt is enabled, the FIFO buffer should also be enabled using the 
PCI3E_EnableFIFOBuffer  function. 
   
C Language Function Prototype: 
int _stdcall PCI3E_GetInterruptControl(short iDevic eNo, BOOL 
*pbEnableFIFOHalfFullInterrupt, BOOL *pbEnableTrigg erOutInterrupt); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pbEnableFIFOHalfFullInterrupt : in-out boolean parameter that holds the enable state of the 
FIFO Half-Full interrupt. 1 = enabled, 0 = disabled 
pbEnableTriggerOutInterrupt : in-out boolean parameter that holds the enable state of the 
trigger-out interrupt. 1 = enabled, 0 = disabled 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
BOOL bFIFOHalfFullInterrupt = FALSE; 
BOOL bEncoderTriggerOutInterrupt = FALSE;  
 
iResult = PCI3E_GetInterruptControl(iDeviceNo, &bFI FOHalfFullInterrupt,      

&bEncoderTriggerOutInterrupt); 
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetInterruptControl L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pbFIFOHalfFullInterrupt  As Long, ByRef 
pbEncoderTriggerOutInterrupt As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bFIFOHalfFullInterrupt As Long 
Dim bEncoderTriggerOutInterrupt As Long 
  
iDeviceNo = 0   
 
errCode = PCI3E_GetInterruptControl(iDeviceNo, bFIF OHalfFullInterrupt, 
bEncoderTriggerOutInterrupt) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 74

9.4.19 PCI3E_GetInvertIndex 
Description: 
This function retrieves a boolean value that determines the active level of the index. 
bVal = TRUE  when the index is active low.  Default is active high. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetInvertIndex(short iDeviceNo, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = FALSE;  
 
iResult = PCI3E_GetInvertIndex(iDeviceNo, iEncoder,  &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetInvertIndex Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetInvertIndex(iDeviceNo, iEncoder,  bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 75

9.4.20 PCI3E_GetMatch 
Description: 
This function retrieves the match register value. The match register is used as a reference to signal 
a capture when the counter equals the match register value. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetMatch(short iDeviceNo, short iEncoder, unsigned long 
*pulVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pulVal : in-out parameter containing the match register value. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
unsigned long ulVal = 0;  
 
iResult = PCI3E_GetMatch(iDeviceNo, iEncoder, &ulVa l); 
if ( iResult != S_OK ){ // Handle error... } 
 

VB Language Function Declaration: 
Public Declare Function PCI3E_GetMatch Lib "USD_PCI _3E.dll" (ByVal iDeviceNo As 
Integer, ByVal iEncoder As Integer, ByRef pulVal As  Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetMatch(iDeviceNo, iEncoder, lVal)  
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 76

9.4.21 PCI3E_GetMultiplier 
Description: 
This function retrieves the multiplier mode that determines when the counter is to be incremented 
based on the number of quadrature state transitions.  See possible values in parameters description. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetMultiplier(short iDeviceNo, s hort iEncoder, short 
*piVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
piVal : identifies when the counter increments.   
 Possible values are: 0 = in_a is clock, in_b is direction  
    1 = count increments once every four quad states, X1 
    2 = count increments once every two quad states, X2 
    3 = count increments once every quad state, X4 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
short iVal = 0;  
 
iResult = PCI3E_GetMultiplier(iDeviceNo, iEncoder, &iVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetMultiplier Lib "US D_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref piVal As Integer) As 
Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim iVal As Integer 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetMultiplier(iDeviceNo, iEncoder, iVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 77

9.4.22 PCI3E_GetOutputPortConfig 
Description: 
This function retrieves the output port setup configuration.   
 
The output port pins may be driven by the output port register or trigger out signals. 
 
If the trigger out signal is used to drive the output port, then the pucTriggerSignalLengthCode 

parameter indicates the length of the output trigger signal.  
 
C Language Function Prototype: 
int _stdcall PCI3E_GetOutputPortConfig(short iDevic eNo, BOOL 
*pbTriggerOutSignalDrivesOutputPin, unsigned char * pucTriggerSignalLengthCode); 
 

Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pbTriggerOutSignalDrivesOutputPin : pointer to an array of 4 booleans which are used 
indicate if the cooresponding output port pins are driven by the output port register or trigger out 
signals. 
 
array element  0: 0 --- OUT0 is driven by bit 0 of reg.#46 
   1 --- OUT0 is driven by Trigger Out signal from Encoder Channel 0 
array element  1: 0 --- OUT1 is driven by bit 1 of reg.#46 
   1 --- OUT1 is driven by Trigger Out signal from Encoder Channel 1 
array element  2: 0 --- OUT2 is driven by bit 2 of reg.#46 
   1 --- OUT2 is driven by Trigger Out signal from Encoder Channel 2 
array element  3: 0 --- OUT3 is driven by bit 3 of reg.#46 
   1 --- OUT3 is driven by Combined Trigger Out signal 
 

pucTriggerSignalLengthCode : identifies the length of the signal generated on the output pin.  
This only applies when the output is driven by Trigger Out signal.  
 
Code  Length of Trigger Signal 
0     1 mS 
1 200 µS 
2   20 µS 
3     5 µS 
4 Toggle 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
BOOL bTriggerOutSignalDrivesOutputPin[4] = {0, 0, 0 , 0};  



 78

unsigned char ucTriggerSignalLengthCode = 0;  
iResult = PCI3E_GetOutputPortConfig(iDeviceNo, 
      bTriggerOutSignalDrivesOutputPin, 
      &ucTriggerSignalLengthCode); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetOutputPortConfig L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pbTriggerOutSignalDrive sOutputPin As Long, ByRef 
ucTriggerSignalLengthCode As Byte) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bTriggerOutSignalDrivesOutputPin (3) As Long 
Dim bytTriggerSignalLengthCode As Byte  
 
iDeviceNo = 0 
bytTriggerSignalLengthCode = 0 
 
errCode = PCI3E_GetOutputPortConfig(iDeviceNo, _ 
      bTriggerOutSignalDrivesOutputPin, _ 
      bytTriggerSignalLengthCode) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 79

9.4.23 PCI3E_GetPresetOnIndex 
Description: 
This function retrieves a boolean value that indicates whether index will either reset or preset 
accumulator (counter).  1 = preset occurs when index is detected, 0 = reset will occur when index 
is detected.  This function requires that the index is enabled using PCI3E_SetEnableIndex. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetPresetOnIndex(short iDeviceNo , short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out parameter that will receive the preset on index enable value. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0;  
BOOL bVal = False; 
 
iResult = PCI3E_GetPresetOnIndex(iDeviceNo, iEncode r, &bVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetPresetOnIndex Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetPresetOnIndex(iDeviceNo, iEncode r, bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 80

9.4.24 PCI3E_GetPresetValue 
Description: 
This function retrieves the Preset register value. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetPresetValue(short iDeviceNo, short iEncoder, unsigned 
long *pulVal); 
 

Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pulVal : the Preset register value may also be referred to as upper-limit, range-limit, max count,  or 
resolution -1.   
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0;  
unsigned long ulVal = 0;  
  
iResult = PCI3E_GetPresetValue(iDeviceNo, iEncoder,  &ulVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetPresetValue Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetPresetValue(iDeviceNo, iEncoder,  lVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 81

9.4.25 PCI3E_GetROM_ID 
Description: 
This function retrieves the ROM_ID which is contained in bits 24 through 31 of the Command 
register. 
  
C Language Function Prototype: 
int _stdcall PCI3E_GetROM_ID(short iDeviceNo, unsig ned char *pucVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pucVal : an eight bit value that identifies the ROM ID.   
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned char ucVal = 0;  
  
iResult = PCI3E_GetROM_ID(iDeviceNo, &ucVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetROM_ID Lib "USD_PC I_3E.dll" (ByVal iDeviceNo 
As Integer, ByRef pucVal As Byte) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bytVal As Byte 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetROM_ID(iDeviceNo, bytVal); 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 82

9.4.26 PCI3E_GetSamplesRemaining 
Description: 
This function retrieves the number of samples remaining to be collected.   
 
C Language Function Prototype: 
int _stdcall PCI3E_GetSamplesRemaining(short iDevic eNo, unsigned long *pulVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulVal: in-out parameter that identifies the number of samples remaining to be collected.   
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulVal = 0;  
 
iResult = PCI3E_GetSamplesRemaining(iDeviceNo, &ulV al); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetSamplesRemaining L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pulVal As Long) As Long  

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetSamplesRemaining(iDeviceNo, lVal ) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 83

9.4.27 PCI3E_GetSamplesToCollect 
Description: 
This function retrieves the number of samples to be collected when an acquisition is started. 
  
C Language Function Prototype: 
int _stdcall PCI3E_GetSamplesToCollect(short iDevic eNo, unsigned long *pulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulVal: in-out parameter that identifies the number of samples to be collected. 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulVal = 0;  
  
iResult = PCI3E_GetSamplesToCollect(iDeviceNo, &ulV al); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetSamplesToCollect L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pulVal As Long) As Long  

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetSamplesToCollect(iDeviceNo, lVal ) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 84

9.4.28 PCI3E_GetSamplingRateCounter 
Description: 
This function retrieves the number of sample periods that have expired since the data acquisition 
was last started. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetSamplingRateCounter(short iDe viceNo, unsigned long 
*pulVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulval: in-out parameter that identifies the number of sample periods that have expired since the 
data acquisition was last started.   
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulVal = 0;  
 
iResult = PCI3E_GetSamplingRateCounter(iDeviceNo, & ulVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetSamplingRateCounte r Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef pulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetSamplingRateCounter(iDeviceNo, l Val) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 
  



 85

9.4.29 PCI3E_GetSamplingRateMultiplier 
Description: 
This function retrieves the 32 bit sampling rate multiplier (N) which is used to determine the 
sampling period.  The sampling period is calculated by the following equations.  
 
N: the value of the “sampling rate multiplier register” 
The sampling period = (N+1) * 30 microsecond 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetSamplingRateMultiplier(short iDeviceNo, unsigned long 
*pulVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulVal:  in-out parameter that contains the sampling rate multiplier used to calculate the sampling 
period.   
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulVal = 0;  
 
iResult = PCI3E_GetSamplingRateMultiplier(iDeviceNo , &ulVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetSamplingRateMultip lier Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef pulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetSamplingRateMultiplier(iDeviceNo , lVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 86

9.4.30 PCI3E_GetSlotNumber 
Description: 
This function retrieves the slot number assigned to the PCI-3E card via the PCI bus. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetSlotNumber(short iDeviceNo, s hort *piVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
piVal : identifies the assigned PCI bus slot number. 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iVal = 0; 
 
iResult = PCI3E_GetSlotNumber(iDeviceNo, &iVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetSlotNumber Lib "US D_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef piVal As Integer) As Lo ng 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iVal As Integer 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetSlotNumber(iDeviceNo, iVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 87

9.4.31 PCI3E_GetStatus 
Description: 
This function retrieves the status register value for an encoder channel. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetStatus(short iDeviceNo, short  iEncoder, unsigned long 
*pulVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pulVal : in out parameters which contains the status register value.  Refer to section 6.2 Status 
Registers. 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
unsigned long ulVal = 0;  
 
iResult = PCI3E_GetStatus(iDeviceNo, iEncoder, &ulV al); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetStatus Lib "USD_PC I_3E.dll" (ByVal iDeviceNo 
As Integer, ByVal iEncoder As Integer, ByRef pulVal  As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetStatus(iDeviceNo, iEncoder, lVal ) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 88

9.4.32 PCI3E_GetStatusEx 
Description: 
This function retrieves the status of each trigger on event for a specified encoder channel. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetStatusEx(short iDeviceNo, sho rt iEncoder, BOOL 
*pbDecreaseDetected, BOOL *pbIncreaseDetected, BOOL  *pbIndexDetected, BOOL 
*pbRollunderDetected, BOOL *pbRolloverDetected, BOO L *pbMatchDetected, BOOL 
*pbZeroDetected); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbDecreaseDetected : indicates if the accumulator has decreased in value.  
pbIncreaseDetected : indicates if the accumulator has increased in value.  
pbIndexDetected : indicates if an index signal has been detected. 
pbRollunderDetected : indicates if a rollunder has occurred. 
pbRolloverDetected : indicates if a rollover has occurred. 
pbMatchDetected : indicates if a match has occurred. 
pbZeroDetected : indicates if the accumulator was equal to zero. 
 
Refer to section 6.2 Status Registers. 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
Short iEncoder = 0; 
BOOL bDecreaseDetected = FALSE; 
BOOL bIncreaseDetected = FALSE; 
BOOL bIndexDetected = FALSE;  
BOOL bRollunderDetected = FALSE; 
BOOL bRolloverDetected = FALSE; 
BOOL bMatchDetected = FALSE; 
BOOL bZeroDetected = FALSE; 
 
iResult = PCI3E_GetStatusEx(iDeviceNo, iEncoder, &b DecreaseDetected, 
        &bIncreaseDetected, &bIndexDetected, 
        &bRollunderDetected, &bRolloverDetected, 
        &bMatchDetected, &bZeroDetected); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetStatusEx Lib "USD_ PCI_3E.dll" (ByVal iDeviceNo 
As Integer, ByVal iEncoder As Integer, ByRef pbDecr easeDetected As Long, ByRef 
pbIncreaseDetected As Long, ByRef pbIndexDetected A s Long, ByRef 
pbRollunderDetected As Long, ByRef pbRolloverDetect ed As Long, ByRef 
pbMatchDetected As Long, ByRef pbZeroDetected As Lo ng) As Long 



 89

 

Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bDecreaseDetected As Long 
Dim bIncreaseDetected As Long 
Dim bIndexDetected As Long  
Dim bRollunderDetected As Long 
Dim bRolloverDetected As Long 
Dim bMatchDetected As Long 
Dim bZeroDetected As Long 
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetStatusEx(iDeviceNo, iEncoder, bD ecreaseDetected, 
        bIncreaseDetected, bIndexDetected, 
        bRollunderDetected, bRolloverDetected, 
        bMatchDetected, bZeroDetected) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 90

9.4.33 PCI3E_GetTimeBasedLogSettings 
Description: 
This function retrieves the settings used to determine the condition that must be satisfied in order 
to start a data acquisistion.  Once the acquisition is started, the PCI-3E will evaluate the 
pucQualifier  parameter on each sampling period to determine if the data should be stored or 
discarded. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTimeBasedLogSettings(short iD eviceNo,  
unsigned char *pucTrigger, unsigned char *pucTrigAn d,  
unsigned char *pucQualifier, unsigned char *pucQual And,  
unsigned long *pulNumberOfSamples); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pucTrigger: an array of 4 triggering codes. 
pucTrigAnd: in-out parameter that determines if the array of trigger codes are AND’ed or OR’ed.  
 1 = AND’ed, 0 = OR’ed 
pucQualifier: and array of 4 qualifier codes. 
pucQualAnd: in-out parameter that determines if the array of qualifier codes are AND’ed or 

OR’ed.  
 1 = AND’ed, 0 = OR’ed 
pulNumberOfSamples: identifies the number of samples to be collected. 
 
Triggering / Qualifier Codes 
Trigger or qualify never (ignore)   0 
Trigger or qualify on rising edge   1 
Trigger or qualify on falling edge   2 
Trigger or qualify on either edge   3 
Trigger or qualify on high condition   4 
Trigger or qualify on low condition   5 
Trigger or qualify unconditionally (always)  6  
Trigger or qualify unconditionally (always)  7 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned char ucTrigger[4] = {0,0,0,0}; 
unsigned char ucTrigAnd = FALSE; 
unsigned char ucQualifier[4] = {0,0,0,0}; 
unsigned char ucQualAnd = FALSE; 
unsigned long ulNumSamples = 0; 
 
iResult = PCI3E_GetTimeBasedLogSettings(iDeviceNo, ucTrigger, &ucTrigAnd, 



 91

 ucQualifier, &ucQualAnd, &ulNumSamples); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTimeBasedLogSettin gs Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef pucTrigger As By te, ByRef pucTrigAnd As 
Byte, ByRef pucQualifier As Byte, ByRef pucQualAnd As Byte, ByRef 
pulNumberOfSamples As Long) As Long 
 

Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bytTrigger(3) As Byte 
Dim bytTriggerAnd As Byte 
Dim bytQualifier(3) As Byte 
Dim bytQualifierAnd As Byte 
Dim lNumberOfSamples As Long 
 
iDeviceNo = 0 
     
errCode = PCI3E_GetTimeBasedLogSettings(iDeviceNo, bytTrigger(0), 
bytTriggerAnd, bytQualifier(0), bytQualifierAnd, lN umberOfSamples) 
    If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 92

9.4.34 PCI3E_GetTimeStamp 
Description: 
This function writes to the CMD_Register which causes the TimeStamp counter to be latched to 
the TimeStamp Latch and then reads the TimeStamp Latch.  Refer to the ReadTimeStamp function 
to simply read the TimeStamp Latch without causing the TimeStamp counter to be transferred to 
the TimeStamp Latch. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTimeStamp(short iDeviceNo, un signed long *pulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulVal : in-out parameter containing the TimeStamp Latch value. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulVal = 0; 
 
iResult = PCI3E_GetTimeStamp(iDeviceNo, &ulVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTimeStamp Lib "USD _PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pulVal As Long) As Long  

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
 
errCode = PCI3E_GetTimeStamp(iDeviceNo, lVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 93

9.4.35 PCI3E_GetTriggerOnDecrease 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when 
the count decreases. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnDecrease(short iDevi ceNo, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in out parameters.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = False;  
 
iResult = PCI3E_GetTriggerOnDecrease(iDeviceNo, iEn coder, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnDecrease Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetTriggerOnDecrease(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 94

9.4.36 PCI3E_GetTriggerOnIncrease 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when a 
count increases. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnIncrease(short iDevi ceNo, short iEncoder, BOOL 
*pbVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter.  See description above.   

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = False;  
 
iResult = PCI3E_GetTriggerOnIncrease(iDeviceNo, iEn coder, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnIncrease Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetTriggerOnIncrease(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 95

9.4.37 PCI3E_GetTriggerOnIndex 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when 
the edge of index is detected.   
See also PCI3E_SetEnableIndex, PCI3E_SetInvertIndex  and, PCI3E_SetPresetOnIndex . 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnIndex(short iDeviceN o, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter.  See description above.   
 

Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = False;  
 
iResult = PCI3E_GetTriggerOnIndex(iDeviceNo, iEncod er, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnIndex Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetTriggerOnIndex(iDeviceNo, iEncod er, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 96

9.4.38 PCI3E_GetTriggerOnMatch 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when 
count = match. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnMatch(short iDeviceN o, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in out boolean parameter.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = FALSE;  
 
iResult = PCI3E_GetTriggerOnMatch(iDeviceNo, iEncod er, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnMatch Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetTriggerOnMatch(iDeviceNo, iEncod er, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 97

9.4.39 PCI3E_GetTriggerOnRollover 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when 
rolling over N-1 to 0 in modulo-N mode. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnRollover(short iDevi ceNo, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
pbVal : in out parameters.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = False;  
 
iResult = PCI3E_GetTriggerOnRollover(iDeviceNo, iEn coder, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnRollover Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetTriggerOnRollover(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 98

9.4.40 PCI3E_GetTriggerOnRollunder 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when 
rolling under 0 to N-1 in modulo-N mode. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnRollunder(short iDev iceNo, short iEncoder, BOOL 
*pbVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
pbVal : in-out parameters.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
short iEncoder = 0; 
BOOL bVal = False;  
 
iResult = PCI3E_GetTriggerOnRollunder(iDeviceNo, iE ncoder, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnRollunder  Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0 
iEncoder = 0 
 
errCode = PCI3E_GetTriggerOnRollunder(iDeviceNo, iE ncoder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 99

9.4.41 PCI3E_GetTriggerOnZero 
Description: 
This function retrieves a boolean value that indicates whether a trigger signal is generated when 
count = 0. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetTriggerOnZero(short iDeviceNo , short iEncoder, BOOL 
*pbVal); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : in-out parameters.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = False;  
 
iResult = PCI3E_GetTriggerOnZero(iDeviceNo, iEncode r, &bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetTriggerOnZero Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pbVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0   
iEncoder = 0  
 
errCode = PCI3E_GetTriggerOnZero(iDeviceNo, iEncode r, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 100

9.4.42 PCI3E_GetVersion 
Description: 
This function retrieves the version number associated with a specified device. 
 
C Language Function Prototype: 
int _stdcall PCI3E_GetVersion(short iDeviceNo, shor t *piVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
piVal : identifies the version number of the PCI-3E card. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
int iVal = 0;  
iResult = PCI3E_GetVersion(iDeviceNo, &iVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_GetVersion Lib "USD_P CI_3E.dll" (ByVal iDeviceNo 
As Integer, ByRef piVal As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iVal As Integer 
 
iDeviceNo = 0  
 
errCode = PCI3E_GetVersion(iDeviceNo, iVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 101

9.4.43 PCI3E_Initialize 
Description: 
This function is used to open a connection with all installed and detected PCI-3E encoder interface 
cards.  This function returns the number of cards detected in the in-out parameter piDeviceCount.  
This function must be called before any other function.  Almost all other function calls require a 
device number.  If there are two boards detected, then the first board will be device number 0 and 
the second device number 1.  
 
This function sets the control registers and the preset registers of all channels to the following 
values: 
 
The Control Register is loaded with 0x074000 
Description Master enable: enable   bit 18 = `1’,   
  Counter mode: modulo-N  bit 17 = `1’, bit 16 = `1’ 
  Quadrature mode: X1   bit 15 = `0’, bit 14 = `1’ 
  
The Preset Register is loaded with 0x0001F3  (499 in decimal) for an encoder with 500 CPR. 
 
After PCI3E_Initialize is called, functions in “Counter Set-up Group” (See 9.3 User friendly 
functions) can be used to change the configuration if needed. 
  
C Language Function Prototype: 
int _stdcall PCI3E_Initialize(short *piDeviceCount) ;  

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
piDeviceCount : an in-out parameter used to return the number of boards detected. 

 
Example C Usage: 
int iResult = 0; 
short iDeviceCount = 0; 
 
iResult = PCI3E_Initialize(&iDeviceCount); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_Initialize Lib "USD_P CI_3E.dll" (ByRef 
piDeviceCount As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceCount As Integer 
 
errCode = PCI3E_Initialize(iDeviceCount) 



 102

If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 103

9.4.44 PCI3E_PresetCount 
Description: 
This function sets a channel’s counter to its preset register value. 
 
C Language Function Prototype: 
int _stdcall PCI3E_PresetCount(short iDeviceNo, sho rt iEncoder); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
 
iResult = PCI3E_PresetCount(iDeviceNo, iEncoder); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_PresetCount Lib "USD_ PCI_3E.dll" (ByVal iDeviceNo 
As Integer, ByVal iEncoder As Integer) As Long 

  
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
 
iDeviceNo = 0   
iEncoder = 0  
 
errCode = PCI3E_PresetCount(iDeviceNo, iEncoder) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  

 



 104

9.4.45 PCI3E_ReadFIFOBuffer 
Description: 
This function reads the FIFO buffer records and copies the data into user allocated arrays.  
The user is responsible for creating the arrays and passing their pointer to this function. 
 
The piSize parameter identifies the number of records to read.  Each of the allocated arrays must 
be at least piSize in length. 
 
If the specified number of records is greater than the number of records in the FIFO buffer, then 
only the records in the FIFO buffer are read and copied.  The piSize parameter will be changed to 
the number of records that were copied.   
 
This function returns when (1) the number of records read equals piSize, or (2) the FIFO buffer is 
empty, or (3) the FIFO buffer is full (possible overflow). 
   
C Language Function Prototype: 
int _stdcall PCI3E_ReadFIFOBuffer(short iDeviceNo,      
           short *piSize,  
           unsigned long *pTime, 
           unsigned long *pCount0,    
         unsigned long *pCount1,    
         unsigned long *pCount2,    
         unsigned char *pStatus0,    
         unsigned char *pStatus1,    
         unsigned char *pStatus2,    
         unsigned char *pInput); 
 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
piSize : refer to description above. 
pTime : an array of TimeStamp. 
pCount0 : an array of encoder channel 0 counts. 
pCount1 : an array of encoder channel 1 counts. 
pCount2 : an array of encoder channel 2 counts. 
pStatus0 : an array of encoder channel 0 status codes. 
pStatus1 : an array of encoder channel 1 status codes. 
pStatus2 : an array of encoder channel 2 status codes. 
pInput : an array of input port register values. 
  Bit 7: last direction------------------------from bit 23 of Status reg. 
  Bit 6: latched_retard_detected-----------from bit 13 of Status reg. 
  Bit 5: latched_advance_detected--------from bit 12 of Status reg. 
  Bit 4: latched_index_detected-----------from bit 11 of Status reg. 
  Bit 3: latched_borrow_detected---------from bit 10 of Status reg. 



 105

  Bit 2: latched_carry_detected------------from bit 9 of Status reg. 
  Bit 1: latched_match_detected-----------from bit 8 of Status reg. 
  Bit 0: latched_zero_detected-------------from bit 7 of Status reg. 
 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iSize = PCI3E_FIFO_MAX_COUNT; 
unsigned long Time[PCI3E_FIFO_MAX_COUNT]; 
unsigned long Count0[PCI3E_FIFO_MAX_COUNT]; 
unsigned long Count1[PCI3E_FIFO_MAX_COUNT]; 
unsigned long Count2[PCI3E_FIFO_MAX_COUNT]; 
unsigned char Status0[PCI3E_FIFO_MAX_COUNT]; 
unsigned char Status1[PCI3E_FIFO_MAX_COUNT]; 
unsigned char Status2[PCI3E_FIFO_MAX_COUNT]; 
unsigned char Input[PCI3E_FIFO_MAX_COUNT]; 
 
iResult = PCI3E_ReadFIFOBuffer(iDeviceNo, &iSize, T ime, 
       Count0, Count1, Count2,  
       Status0, Status1, Status2, 
       Input); 
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadFIFOBuffer Lib "U SD_PCI_3E.dll" ( _ 

ByVal iDeviceNo As Integer, _ 
ByRef piSize As Integer, _ 
ByRef pCount0 As Long, _ 
ByRef pCount1 As Long, _ 
ByRef pCount2 As Long, _ 
ByRef pStatus0 As Byte, _ 
ByRef pStatus1 As Byte, _ 
ByRef pStatus2 As Byte, _ 
ByRef pInput As Byte) 

 
Example VB Usage: 
Dim errCode       As Long 
Dim iDeviceNo     As Integer 
Dim iSize      As Integer 
Dim Count0(PCI3E_FIFO_MAX_COUNT-1)  As Long  
Dim Count1(PCI3E_FIFO_MAX_COUNT-1)  As Long  
Dim Count2(PCI3E_FIFO_MAX_COUNT-1)  As Long  
Dim Status0(PCI3E_FIFO_MAX_COUNT-1) As Byte 
Dim Status1(PCI3E_FIFO_MAX_COUNT-1) As Byte 
Dim Status2(PCI3E_FIFO_MAX_COUNT-1) As Byte 
Dim Input(PCI3E_FIFO_MAX_COUNT-1)  As Byte 
 
iSize = PCI3E_FIFO_MAX_COUNT 
iDeviceNo = 0   
 
errCode = PCI3E_ReadFIFOBuffer(iDeviceNo, iSize, Ti me(0), 
       Count0(0), Count1(0), Count2(0),  
       Status0(0), Status1(0), Status2(0), 
       Input(0)) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 106

9.4.46 PCI3E_ReadFIFOBufferStruct 
Description: 
This function reads the FIFO buffer records and copies the data into the user allocated array of   
PCI3E_FIFOBufferRecord stucture.  The user is responsible for creating the array and passing 
it’s pointer to this function. 
 
The piSize parameter identifies the number of records to read.  The allocated array of 
PCI3E_FIFOBufferRecord  structure must be at least piSize in length. 
 
If the specified number of records are greater than the number of records in the FIFO buffer, then 
only the records in the FIFO buffer are read and copied.  The piSize parameter will be changed to 
the number of records that were copied.   
 
This function returns when (1) the number of records read equals piSize, or (2) the FIFO buffer is 
empty, or (3) the FIFO buffer is full (possible overflow). 
   
C Language Function Prototype: 
int _stdcall PCI3E_ReadFIFOBuffer(short iDeviceNo, short *piSize, 
PCI3E_FIFOBufferRecord *pCBR);  

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
piSize : refer to description above. 
pCBR: an array of PCI3E_FIFOBufferRecord .  
  

C – Definition of Channel Buffer 
Record 

VB Definition of Channel Buffer 
Record 

struct PCI3E_FIFOBufferRecord  
{ 
 unsigned long Time; 
 unsigned long Count[3]; 
 unsigned char Status[3]; 
 unsigned char Input; 
}; 

Public Type 
PCI3E_FIFOBufferRecord 
        Time As Long 
        Count(2) As Long 
        Status(2) As Byte 
        Input As Byte 
End Type 
 

  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iSize = PCI3E_FIFO_MAX_COUNT; 
PCI3E_FIFOBufferRecord cbr[PCI3E_FIFO_MAX_COUNT]; 
 
iResult = PCI3E_ReadFIFOBuffer(iDeviceNo, &iSize, c br); 
if ( iResult != S_OK ){ // Handle error...} 
 



 107

VB Language Function Declaration: 
Public Declare Function PCI3E_ReadFIFOBuffer Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef piSize As Integer, ByRe f pCBR As 
PCI3E_FIFOBufferRecord) As Long 

 
Example VB Usage: 
Dim errCode   As Long 
Dim iDeviceNo As Integer 
Dim iSize    As Integer 
Dim cbr(PCI3E_FIFO_MAX_COUNT -1) As PCI3E_FIFOBuffe rRecord  
iSize = FIFO_MAX_COUNT 
iDeviceNo = 0   
 
errCode = PCI3E_ReadFIFOBuffer(iDeviceNo, iSize, cb r) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 108

9.4.47 PCI3E_ReadInputPortRegister 
Description: 
This function returns the value stored in the input port register. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ReadInputPortRegister(short iDev iceNo, unsigned char 
*pucVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pucVal : in-out parameter containing the value read from the input port register.    
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned char ucVal;  
 
iResult = PCI3E_ReadInputPortRegister(iDeviceNo, &u cVal); 
if( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadInputPortRegister  Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pucVal As Byte) As Long  

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bytVal As Byte 
 
iDeviceNo = 0 
 
errCode =  PCI3E_ReadInputPortRegister(iDeviceNo, b ytVal) 
If errCode <> 0 Then  
 ‘ Handle error... 
End If 



 109

9.4.48 PCI3E_ReadOutputLatch 
Description: 
This function returns the value from Output Latch Register.   
 
C Language Function Prototype: 
int _stdcall PCI3E_ReadOutputLatch(short iDeviceNo,  short iEncoder, unsigned 
long *pulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pulVal : in-out parameter that contains the Output Latch Register value. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
unsigned long ulVal = 0; 
 
iResult = PCI3E_ReadOutputLatch(iDeviceNo, iEncoder , &ulVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadOutputLatch Lib " USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Ref pulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
 
iDeviceNo = 0   
iEncoder = 0  
 
errCode = PCI3E_ReadOutputLatch(iDeviceNo, iEncoder , lVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 110

9.4.49 PCI3E_ReadOutputPortRegister 
Description: 
This function returns the value stored in the output port register. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ReadOutputPortRegister(short iDe viceNo, unsigned char 
*pucVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pucVal : in-out parameter containing value read from the output port register.    

 
Bit 7-4: always 0 
Bit 3: Output Port – OUT3 
Bit 2: Output Port – OUT2 
Bit 1: Output Port – OUT1 
Bit 0: Output Port – OUT0 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned char ucVal;  
 
iResult = PCI3E_ReadOutputPortRegister(iDeviceNo, & ucVal); 
if( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadOutputPortRegiste r Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef pucVal As Byte) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bytVal As Byte 
 
iDeviceNo = 0 
 
errCode =  PCI3E_ReadOutputPortRegister(iDeviceNo, bytVal) 
If errCode <> 0 Then  
 ‘ Handle error... 
End If 



 111

9.4.50 PCI3E_ReadRegister 
Description: 
This function returns the value stored in a specified PCI-3E register. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ReadRegister(short iDeviceNo, sh ort iRegister, unsigned long 
*pulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iRegister : identifies the specific register to read. Valid registers are 0 – 47. 
pulVal : in-out parameter containing value read from the specified register. 
    
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iRegister = 0;   
unsigned long ulVal = 0; 
 
iResult = PCI3E_ReadRegister(iDeviceNo, iRegister, &ulVal); 
if( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadRegister Lib "USD _PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iRegister As Integer, B yRef pulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iRegister As Integer 
Dim lVal As Long 
 
iDeviceNo = 0 
iRegister = 0 
 
errCode =  PCI3E_ReadRegister(iDeviceNo, iRegister,  lVal) 
If errCode <> 0 Then  
 ‘ Handle error... 
End If 



 112

9.4.51 PCI3E_ReadTimeAndCounts 
Description: 
This function reads the TimeStamp Latch and each encoder’s Output Latch. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ReadTimeAndCounts(short iDeviceN o, unsigned long *pulCounts, 
unsigned long *pulTimeStamp); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulCounts : array of 3 longs containing the Output Latch value for each channel. 
pulTimeStamp : in-out parameter containing the TimeStamp Latch value. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
unsigned long ulCounts [3] = {0, 0, 0}; 
unsigned long ulTimeStamp = 0; 
 
iResult = PCI3E_ReadTimeAndCounts(iDeviceNo, ulCoun ts, &ulTimeStamp); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadTimeAndCounts Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pulCounts As Long, ByRe f pulTimeStamp As Long) As 
Long 

  
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lCounts(2) As Long 
Dim lTimeStamp As Long 
 
iDeviceNo = 0  
 
errCode = PCI3E_ReadTimeAndCounts(iDeviceNo, lCount s(0), lTimeStamp) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 113

9.4.52 PCI3E_ReadTimeStamp 
Description: 
This function reads the TimeStamp Latch register. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ReadTimeStamp(short iDeviceNo, u nsigned long *pulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pulVal : in-out parameter containing the TimeStamp Latch value. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
unsigned long ulVal = 0; 
 
iResult = PCI3E_ReadTimeStamp(iDeviceNo, &ulVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ReadTimeStamp Lib "US D_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pulVal As Long) As Long  

  
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long 
 
iDeviceNo = 0  
 
errCode = PCI3E_ReadTimeStamp(iDeviceNo, lVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 114

9.4.53 PCI3E_RegisterInterruptHandler 
Description: 
This function takes a pointer to a callback function that is called when an interrupt is detected. 
 
Below is an example implementation of an interrupt callback function, where the function name 
may be changed to user’s preference: 
 
C code: 
void __stdcall InterruptHandler(short iDeviceNo) 
{ 
 usigned l ong ulCounts[3] = {0,0,0}; 
 unsigned long ulTimeStamp = 0; 
 short iFIFOCount = 0; 
 int i = 0; 
 
 PCI3E_FIFOBufferRecord cbr[PCI3E_FIFO_MAX_COUNT]; 
 
 // determine if interrupt came from FIFO Half-Full  
 // or encoder trigger-out 
 if (m_bFIFOEnabled) { 
  printf("*** Half-Full Interrupt ***\n"); 
  iFIFOCount = PCI3E_FIFO_MAX_COUNT; 
  while(iFIFOCount) 
  { 
   iFIFOCount = PCI3E_FIFO_MAX_COUNT; 
   // iFIFOCount gets number of records copied. 
   PCI3E_ReadFIFOBuffer(iDeviceNo, &iFIFOCount, cbr ); 
   for (i = 0; i < iFIFOCount; i++) { 
    printf("%u\t%d\t%d\t%d\t%d\n", cbr[i].Time, 
    cbr[i].Count[0], 
    cbr[i].Count[1],  
    cbr[i].Count[2],  
    cbr[i].Count[3]); 
   } 
  } 
 } else { 
  // Get the encoder counts and timestamp. 
  PCI3E_ReadTimeAndCounts (iDeviceNo, ulCounts, &ul TimeStamp); 
   
  // Clear captured status for each encoder 
  for (i = 0; i<PCI3E_MAX_ENCODERS; i++) { 
   PCI3E_ClearCapturedStatus(iDeviceNo, i); 
  } 
 
  printf("%u\t%d\t%d\t%d\n", ulTimeStamp, ulCounts[ 0], 
    ulCounts[1], ulCounts[2]); 
 } 
}  
 
VB code:  
‘ The VB interrupt handler should be place in a VB module. 
Public Sub InterruptHandler (ByVal iDeviceNo As Int eger) 
 ‘TODO: Add code to handle interrupt 
End Sub 

   



 115

C Language Function Prototype: 
int _stdcall PCI3E_RegisterInterruptHandler(short i DeviceNo, unsigned long 
ulInterruptHandler);  

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
ulInterruptHandler : void pointer to interrupt handler function. 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
 
iResult = PCI3E_RegisterInterruptHandler(iDeviceNo,  (unsigned 
long)InterruptHandler);   
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_RegisterInterruptHand ler Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByVal ulInterruptHandl er As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
  
iDeviceNo = 0   
 
errCode = PCI3E_RegisterInterruptHandler(iDeviceNo,  AddressOf InterruptHandler) 
‘ Refer to Public Sub InterruptHandler 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 116

9.4.54 PCI3E_ResetCount 
Description: 
This function sets the counter value to zero. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ResetCount(short iDeviceNo, shor t iEncoder); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
 
iResult = PCI3E_ResetCount(iDeviceNo, iEncoder); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ResetCount Lib "USD_P CI_3E.dll" (ByVal iDeviceNo 
As Integer, ByVal iEncoder As Integer) As Long 

  
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
 
iDeviceNo = 0   
iEncoder = 0  
 
errCode = PCI3E_ResetCount(iDeviceNo, iEncoder) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 
 



 117

9.4.55 PCI3E_ResetTimeStamp 
Description: 
This function sets the TimeStamp counter value to zero. 
 
C Language Function Prototype: 
int _stdcall PCI3E_ResetTimeStamp(short iDeviceNo);  

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
 
iResult = PCI3E_ResetTimeStamp(iDeviceNo); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_ResetTimeStamp Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer) As Long 

  
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0  
 
errCode = PCI3E_ResetTimeStamp(iDeviceNo) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 118

9.4.56 PCI3E_SetCaptureEnabled 
Description: 
This function sets a boolean value that determines whether a trigger_in will cause a transfer from 
counter (accumulator) to output. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetCaptureEnabled(short iDeviceN o, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
bVal : indicates whether a trigger_in will cause a transfer from accumulator to output. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL  bVal = TRUE; 
 
iResult = PCI3E_SetCaptureEnabled(iDeviceNo, iEncod er, bVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetCaptureEnabled Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal as Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = True 
 
errCode = PCI3E_SetCaptureEnabled(iDeviceNo, iEncod er, bVal) 
if errCode <> 0 then  
 ‘ Handle error… 
End If 

 



 119

9.4.57 PCI3E_SetControlMode 
Description: 
This function sets the Control Register value which controls the operation of a channel. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetControlMode(short iDeviceNo, short iEncoder, unsigned 
long ulVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
ulVal : value containing the control mode.  See section 6.1 Control Registers. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
unsigned long ulVal = 0xF4000; // Obtain the correc t control mode. 
 
iResult = PCI3E_SetControlMode (iDeviceNo, iEncoder , ulVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetControlMode Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val ulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
iDeviceNo = 0   
iEncoder = 0  
lVal = &hF4000 ’ Obtain the correct control mode. 
 
errCode = PCI3E_SetControlMode(iDeviceNo, iEncoder,  lVal) 
if errCode <> 0 then  
 ‘ Handle error… 
End If 
 



 120

9.4.58 PCI3E_SetCount 
Description: 
This function sets the count to a specified value. 
 
Caveats: PCI3E_SetCount forces internal counter’s value to a specified value without permanently 
changing the Preset register. In fact, PCI3E_SetCount utilizes the Preset Register for transferring 
data to the internal counter, but the original value of Preset Register is restored at the end of 
function call.  When writing an application that always watches for changing of value of Preset 
Register, the programmer must be aware of this temporary change of value. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetCount(short iDeviceNo, short iEncoder, unsigned long 
ulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
ulVal : the new value to be written to the counter register.    

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;   
unsigned long ulVal= 0; //  Note: choose your value  here. 
 
iResult = SetCount(iDeviceNo, iEncoder, ulVal); 
if ( iResult != S_OK ){ // Handle error...} 
 

VB Language Function Declaration: 
Public Declare Function PCI3E_SetCount Lib "USD_PCI _3E.dll" (ByVal iDeviceNo As Integer, 
ByVal iEncoder As Integer, ByVal ulVal As Long) As Long 
 

Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
iDeviceNo = 0   
iEncoder = 0   
lVal = 0   
 
errCode =  PCI3E_SetCount(iDeviceNo, iEncoder, lVal ) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 

 



 121

9.4.59 PCI3E_SetCounterMode 
Description: 
This function sets the control counter mode that governs the counter behavior and limits.  See 
parameters sections for description of the possible counter modes. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetCounterMode(short iDeviceNo, short iEncoder, short iVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
iVal : 32 bit in-out parameter containing the counter mode. 

0 = acc. acts like a 24 bit counter  
1 = acc. uses preset register in range-limit mode  
2 = acc. uses preset register in non-recycle mode  
3 = acc. uses preset register in modulo-N mode. 

 See 6.1 Control Registers. 
 

Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
short iVal = 0;  
 
iResult = PCI3E_SetCounterMode(iDeviceNo, iEncoder,  iVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetCounterMode Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val iVal As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim iVal As Integer 
 
iDeviceNo = 0   
iEncoder = 0  
 
errCode = PCI3E_SetCounterMode(iDeviceNo, iEncoder,  iVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 122

9.4.60 PCI3E_SetDigitalInputTriggerConfig 
Description: 
This function is used to configure the digital input trigger settings. 
 
Note: Refer to section 6.6 Digital Input Triggering Registers. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetDigitalInputTriggerConfig(sho rt iDeviceNo, BOOL 
*pbEnableTrigger, BOOL *pbTriggerOnRisingEdge); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pbEnableTrigger : an array of four booleans which determine if input signals can generate a 
trigger out signal. 
pbTriggerOnRisingEdge : an array of four booleans which determine the type of tigger signal, 
rising or falling edge.  1 = rising edge, 0 = falling edge. 
 
Example C Usage: 
int iResult = S_OK; 
int iDeviceNo = 0; 
 
// enable trigger on input 0 
BOOL bEnableTrigger[4] = {TRUE, FALSE, FALSE, FALSE };  
 
// look for rising edge on input 0 
BOOL bTriggerOnRisingEdge[4] = {TRUE, FALSE, FALSE,  FALSE};  
 
iResult = PCI3E_SetDigitalInputTriggerConfig(iDevic eNo, bEnableTrigger, 

bTriggerOnRisingEdge); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetDigitalInputTrigge rConfig Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef bEnableTrigger A s Long, ByRef 
bTriggerOnRisingEdge As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bEnableTrigger(3) As Long 
Dim bTriggerOnRisingEdge (3) As Long 
 
iDeviceNo = 0 
bEnableTrigger(0) = True  ‘ enable trigger on input  0 
bTriggerOnRisingEdge(0) = True ‘look for rising edg e on input 0 
 
errCode = PCI3E_GetDigitalInputTriggerConfig  (iDeviceNo, bEnableTrigger(0), 

bTriggerOnRisingEdge(0)) 



 123

If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 124

9.4.61 PCI3E_SetEnableAccumulator 
Description: 
This function sets a boolean value that determines whether the master enable for accumulator is 
set, (must be set to true to count). 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetEnableAccumulator(short iDevi ceNo, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
bVal : in-out boolean parameter identifying whether the counter is enabled. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = FALSE;    
 
iResult = PCI3E_SetEnableAccumulator(iDeviceNo, iEn coder, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetEnableAccumulator Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal as Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = True   
 
errCode = PCI3E_SetEnableAccumulator(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 125

9.4.62 PCI3E_SetEnableIndex 
Description: 
This function sets a boolean value that indicates whether index detection is enabled.  When 
enabled, you can use the PCI3E_SetPresetOnIndex  to determine how to respond to an index 
signal. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetEnableIndex(short iDeviceNo, short iEncoder, BOOL bVal); 
 

Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
bVal : in-out boolean parameter identifying whether the index is enabled. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = FALSE;  
 
iResult = PCI3E_SetEnableIndex(iDeviceNo, iEncoder,  bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetEnableIndex Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal as Long 
   
iDeviceNo = 0   
iEncoder = 0  
bVal = True   
 
errCode = PCI3E_SetEnableIndex(iDeviceNo, iEncoder,  bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 126

9.4.63 PCI3E_SetForward 
Description: 
This function sets a boolean value that indicates whether the B input of quadrature signal is 
inverted.  1 = inverted, 0 = not inverted. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetForward(short iDeviceNo, shor t iEncoder, BOOL bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
pbVal : in-out boolean parameter identifying if the B signal is inverted or not. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = TRUE;    
 
iResult = PCI3E_SetForward(iDeviceNo, iEncoder, bVa l); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetForward Lib "USD_P CI_3E.dll" (ByVal iDeviceNo 
As Integer, ByVal iEncoder As Integer, ByVal bVal A s Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = True   
 
errCode = PCI3E_SetForward(iDeviceNo, iEncoder, bVa l) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 127

9.4.64 PCI3E_SetInterruptControl 
Description: 
This function sets the current enable state of the FIFO Half-Full interrupt and the Encoder Trigger-
Out interrupt.   
 
Note: if the FIFO Half-Full interrupt is enabled, the FIFO buffer should also be enabled using the 
PCI3E_EnableFIFOBuffer function. 
   
C Language Function Prototype: 
int _stdcall PCI3E_SetInterruptControl(short iDevic eNo, BOOL 
bEnableFIFOHalfFullInterrupt, BOOL bEnableTriggerOu tInterrupt); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
bEnableFIFOHalfFullInterrupt: enable state of the FIFO Half-Full interrupt. 
1 = enabled, 0 = disabled 

bEnableTriggerOutInterrupt: enable state of the trigger-out signal interrupt. 
1 = enabled, 0 = disabled 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
BOOL bEnableFIFOHalfFullInterrupt= FALSE; 
BOOL bEnableTriggerOutInterrupt = TRUE;  
 
iResult = PCI3E_SetInterruptControl(iDeviceNo, bEna bleFIFOHalfFullInterrupt, 
bEnableTriggerOutInterrupt); 
if ( iResult != S_OK ){ // Handle error...} 
 

VB Language Function Declaration: 
Public Declare Function PCI3E_SetInterruptControl L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal bEnableFIFOHalfFullInte rrupt As Long, ByVal 
bEnableTriggerOutInterrupt As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bEnableFIFOHalfFullInterruptAs Long 
Dim bEnableTriggerOutInterrupt As Long 
  
iDeviceNo = 0   
bEnableFIFOHalfFullInterruptAs = False 
bEnableTriggerOutInterrupt = True 
 
errCode = PCI3E_SetInterruptControl(iDeviceNo, bEna bleFIFOHalfFullInterrupt, 

bEnableTriggerOutInterrupt) 
If errCode <> 0 then  



 128

 ‘ Handle error.. 
End If 

 



 129

9.4.65 PCI3E_SetInvertIndex 
Description: 
This function takes a boolean value that determines the active level of the index. 
bVal = TRUE  when the index is active low.  Default is active high.  
 
C Language Function Prototype: 
int _stdcall PCI3E_SetInvertIndex(short iDeviceNo, short iEncoder, BOOL bVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
bVal : in-out boolean parameter.  See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = FALSE;  
 
iResult = PCI3E_SetInvertIndex(iDeviceNo, iEncoder,  bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetInvertIndex Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal as Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
 
errCode = PCI3E_SetInvertIndex(iDeviceNo, iEncoder,  bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 130

9.4.66 PCI3E_SetMatch 
Description: 
This function sets the Match Register value.   It is used as a reference to signal a capture when the 
counter equals the match register value. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetMatch(short iDeviceNo, short iEncoder, unsigned long 
ulVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
ulVal : contains the value to be written to the Match Register. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
unsigned long ulVal = 500; //  Note: choose your va lue here. 
 
iResult = PCI3E_SetMatch(iDeviceNo, iEncoder, ulVal ); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetMatch Lib "USD_PCI _3E.dll" (ByVal iDeviceNo As 
Integer, ByVal iEncoder As Integer, ByVal ulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long 
 
iDeviceNo = 0   
iEncoder = 0  
lVal = 499   
 
errCode = PCI3E_SetMatch(iDeviceNo, iEncoder, lVal)  
If errCode <> 0 then  
 ‘ Handle error.. 
End If  



 131

9.4.67 PCI3E_SetMultiplier 
Description: 
This function set the multiplier mode that determines when the counter is to be incremented based 
on the number of quadrature state transitions.  See possible values in parameters description. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetMultiplier(short iDeviceNo, s hort iEncoder, short iVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
iVal : identifies when the count increments.   
 Possible values are: 0 = in_a is clock, in_b is direction  
    1 = count increments once every four quad states, X1 
    2 = count increments once every two quad states, X2 
    3 = count increments once every quad state, X4 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
short iVal = 1;   
 
iResult = PCI3E_SetMultiplier(iDeviceNo, iEncoder, iVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetMultiplier Lib "US D_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val iVal As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim iVal As Integer 
 
iDeviceNo = 0   
iEncoder = 0  
iVal = 1   
 
errCode = PCI3E_SetMultiplier(iDeviceNo, iEncoder, iVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 132

9.4.68 PCI3E_SetOutputPortConfig 
Description: 
This function is used to configure the output port setup.   
 
The output port pins may be driven by the output port register or trigger out signals. 
 
If the trigger out signal is used to drive the output port, then the length of the output trigger signal 
may be specified. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetOutputPortConfig(short iDevic eNo, BOOL 
*pbTriggerOutSignalDrivesOutputPin, unsigned char u cTriggerSignalLengthCode); 
 

Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pbTriggerOutSignalDrivesOutputPin : pointer to an array of 4 booleans used to determine if 
the cooresponding output port pins are to be driven by the output port register or trigger out 
signals. 
 
array element  0: 0 --- OUT0 is driven by bit 0 of reg.#46 
   1 --- OUT0 is driven by Trigger Out signal from Encoder Channel 0 
array element  1: 0 --- OUT1 is driven by bit 1 of reg.#46 
   1 --- OUT1 is driven by Trigger Out signal from Encoder Channel 1 
array element  2: 0 --- OUT2 is driven by bit 2 of reg.#46 
   1 --- OUT2 is driven by Trigger Out signal from Encoder Channel 2 
array element  3: 0 --- OUT3 is driven by bit 3 of reg.#46 
   1 --- OUT3 is driven by Combined Trigger Out signal 
 
ucTriggerSignalLengthCode : is used to specify the length of the signal generated on an output 
pin when an output pin is driven by a Trigger Out signal.  
 
Code  Length of Trigger Signal 
0     1 mS 
1 200 µS 
2   20 µS 
3     5 µS 
4 Toggle 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
BOOL bTriggerOutSignalDrivesOutputPin[4] = {1, 0, 0 , 0};  



 133

unsigned char ucTriggerSignalLengthCode = 1;  
iResult = PCI3E_SetOutputPortConfig(iDeviceNo, 
      bTriggerOutSignalDrivesOutputPin, 
      ucTriggerSignalLengthCode); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetOutputPortConfig L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByRef pbTriggerOutSignalDrive sOutputPin As Long, ByVal 
ucTriggerSignalLengthCode As Byte) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bTriggerOutSignalDrivesOutputPin (3) As Long 
Dim bytTriggerSignalLengthCode As Byte  
 
iDeviceNo = 0 
bTriggerOutSignalDrivesOutputPin(0) = 1 
bytTriggerSignalLengthCode = 1 
 
errCode = PCI3E_SetOutputPortConfig(iDeviceNo, _ 
      bTriggerOutSignalDrivesOutputPin, _ 
      bytTriggerSignalLengthCode) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 134

9.4.69 PCI3E_SetPresetOnIndex 
Description: 
This function sets a boolean value that indicates whether index will either reset or preset 
accumulator (counter).  1 = preset occurs when index is detected, 0 = reset will occur when index 
is detected.  This function requires that the index is enabled using PCI3E_SetEnableIndex. 
  
C Language Function Prototype: 
int _stdcall PCI3E_SetPresetOnIndex(short iDeviceNo , short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = False; 
 
iResult = PCI3E_SetPresetOnIndex(iDeviceNo, iEncode r, bVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetPresetOnIndex Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0   
iEncoder = 0  
bVal = True   
 
errCode = PCI3E_SetPresetOnIndex(iDeviceNo, iEncode r, bVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 135

9.4.70 PCI3E_SetPresetValue 
Description: 
This function sets the Preset Register with a new value. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetPresetValue(short iDeviceNo, short iEncoder, unsigned 
long ulVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder : identifies the encoder channel (zero based). 
ulVal : the new preset register value may also be referred to as upper-limit, range-limit, max count,  
or resolution -1. 
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
unsigned long ulVal = 499;  //  Note: choose your v alue here. 
  
iResult = PCI3E_SetPresetValue(iDeviceNo, iEncoder,  ulVal); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetPresetValue Lib "U SD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val ulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim lVal As Long  
 
iDeviceNo = 0   
iEncoder = 0  
lVal = 499  
 
errCode = PCI3E_SetPresetValue(iDeviceNo, iEncoder,  lVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 136

9.4.71 PCI3E_SetSamplesToCollect 
Description: 
This function sets the number of samples to be collected when an acquisition is started. 
  
C Language Function Prototype: 
int _stdcall PCI3E_SetSamplesToCollect(short iDevic eNo, unsigned long ulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
ulVal: identifies the number of samples to collect.   
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
unsigned long ulVal = 100000;  
  
iResult = PCI3E_SetSamplesToCollect(iDeviceNo, ulVa l); 
if ( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetSamplesToCollect L ib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal ulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long  
 
iDeviceNo = 0 
lVal = 100000 
 
errCode = PCI3E_SetSamplesToCollect(iDeviceNo, lVal ) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 137

9.4.72 PCI3E_SetSamplingRateMultiplier 
Description: 
This function sets the 32 bit sampling rate multiplier (N) which is used to determine the sampling 
period.  The sampling period is calculated by the following equations.  
 
N: the value of the “sampling rate multiplier register” 
The sampling period = (N+1) * 30 microsecond 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetSamplingRateMultiplier(short iDeviceNo, unsigned long 
ulVal); 

 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
ulVal: contains the sampling rate multiplier used to calculate the sampling period.   
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned long ulVal = 33332; // Apx. 1 sec period  
 
iResult = PCI3E_SetSamplingRateMultiplier(iDeviceNo , ulVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetSamplingRateMultip lier Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByVal ulVal As Long) A s Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim lVal As Long 
 
iDeviceNo = 0   
lVal = 33332 ‘ Apx. 1 second period 
 
errCode = PCI3E_SetSamplingRateMultiplier(iDeviceNo , lVal) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 138

9.4.73 PCI3E_SetTimeBasedLogSettings 
Description: 
This function is used to configure the settings used to determine the condition that must be 
satisfied in order to start a data acquisition.  Once the acquisition is started, the PCI-3E will 
evaluate the pucQualifier  parameter on each sampling period to determine if the data should be 
stored or discarded. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTimeBasedLogSettings(short iDeviceNo,  
unsigned char *pucTrigger, unsigned char ucTrigAnd,  
unsigned char *pucQualifier, unsigned char ucQualAnd,  
unsigned long  ulNumberOfSamples); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
pucTrigger: pointer to 4 byte array of triggering codes. 
ucTrigAnd: determines if the array of trigger codes are AND’ed or OR’ed.  
 1 = AND’ed, 0 = OR’ed 
pucQualifier: pointer to 4 byte array of qualifier codes. 
ucQualAnd: determines if the array of qualifier codes are AND’ed or OR’ed.  
 1 = AND’ed, 0 = OR’ed 
ulNumberOfSamples: identifies the number of samples to be collected. 
 
Triggering / Qualifier Codes 
Trigger or qualify never (ignore)   0 
Trigger or qualify on rising edge   1 
Trigger or qualify on falling edge   2 
Trigger or qualify on either edge   3 
Trigger or qualify on high condition   4 
Trigger or qualify on low condition   5 
Trigger or qualify unconditionally (always)  6 
Trigger or qualify unconditionally (always)  7 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
 
// trigger on rising edge of input bit 0. 
unsigned char ucTrigger[4] = {1,0,0,0};  
 
// trigger conditions are AND’ed 
unsigned char ucTrigAnd = TRUE;  
 



 139

// qualifier condition set to store always 
unsigned char ucQualifier[4] = {6,6,6,6}; 
 
// qualifier conditions are OR’ed 
unsigned char ucQualAnd = FALSE; 
unsigned long ulNumberOfSamples = 100000; 
 
iResult = PCI3E_SetTimeBasedLogSettings(iDeviceNo, ucTrigger, ucTrigAnd, 
 ucQualifier, ucQualAnd, ulNumberOfSamples); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTimeBasedLogSettin gs Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByRef pucTrigger As By te, ByVal ucTrigAnd As Byte, 
ByRef pucQualifier As Byte, ByVal ucQualAnd As Byte , ByVal ulNumberOfSamples As 
Long) As Long 
 

Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bytTrigger(3) As Byte 
Dim bytTriggerAnd As Byte 
Dim bytQualifier(3) As Byte 
Dim bytQualifierAnd As Byte 
Dim lNumberOfSamples As Long 
 
iDeviceNo = 0 
bytTrigger(0) = 1 
bytTrigAnd = False 
bytQualifier(0) = 6 
bytQualifier(1) = 6 
bytQualifier(2) = 6 
bytQualifier(3) = 6 
bytQualAnd = False 
lNumberOfSamples = 100000 
     
errCode = PCI3E_SetTimeBasedLogSettings(0, bytTrigg er(0), bytTriggerAnd, 
bytQualifier(0), bytQualifierAnd, lNumberOfSamples)  
    If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 140

9.4.74 PCI3E_SetTriggerOnDecrease 
Description: 
This function takes a boolean value that determines whether a trigger signal is generated when the 
count decreases. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnDecrease(short iDevi ceNo, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = FALSE;   
 
iResult = PCI3E_SetTriggerOnDecrease(iDeviceNo, iEn coder, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnDecrease Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
 
errCode = PCI3E_SetTriggerOnDecrease(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 141

9.4.75 PCI3E_SetTriggerOnIncrease 
Description: 
This function sets a boolean value that determines whether a trigger signal is generated when a 
count increases. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnIncrease(short iDevi ceNo, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above.   

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = False;  
 
iResult = PCI3E_SetTriggerOnIncrease(iDeviceNo, iEn coder, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnIncrease Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long   
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
 
errCode = PCI3E_SetTriggerOnIncrease(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 142

9.4.76 PCI3E_SetTriggerOnIndex 
Description: 
This function takes a boolean value that determines whether a trigger signal is generated when the 
edge of an index is detected. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnIndex(short iDeviceN o, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = False;  
 
iResult = PCI3E_SetTriggerOnIndex(iDeviceNo, iEncod er, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnIndex Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = True   
 
errCode = PCI3E_SetTriggerOnIndex(iDeviceNo, iEncod er, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 143

9.4.77 PCI3E_SetTriggerOnMatch 
Description: 
This function takes a boolean value that determines whether a trigger signal is generated when 
count = match. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnMatch(short iDeviceN o, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = FALSE;  
 
iResult = PCI3E_SetTriggerOnMatch(iDeviceNo, iEncod er, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnMatch Lib  "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
errCode = PCI3E_SetTriggerOnMatch(iDeviceNo, iEncod er, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 144

9.4.78 PCI3E_SetTriggerOnRollover 
Description: 
This function takes a boolean value that determines whether a trigger signal is generated when 
rolling over N-1 to 0 in modulo-N mode. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnRollover(short iDevi ceNo, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = False;  
 
iResult = PCI3E_SetTriggerOnRollover(iDeviceNo, iEn coder, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnRollover Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
 
errCode = PCI3E_SetTriggerOnRollover(iDeviceNo, iEn coder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 145

9.4.79 PCI3E_SetTriggerOnRollunder 
Description: 
This function takes a boolean value that determines whether a trigger signal is generated when 
rolling under 0 to N-1 in modulo-N mode. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnRollunder(short iDev iceNo, short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0;  
BOOL bVal = FALSE;  
 
iResult = PCI3E_SetTriggerOnRollunder(iDeviceNo, iE ncoder, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnRollunder  Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long  
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
 
errCode = PCI3E_GetTriggerOnRollunder(iDeviceNo, iE ncoder, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 146

9.4.80 PCI3E_SetTriggerOnZero 
Description: 
This function takes a boolean value that determines whether a trigger signal is generated when 
count = 0. 
 
C Language Function Prototype: 
int _stdcall PCI3E_SetTriggerOnZero(short iDeviceNo , short iEncoder, BOOL 
bVal); 
 
Returns: 
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iEncoder: identifies the encoder channel (zero based). 
bVal : See description above. 

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  
short iEncoder = 0; 
BOOL bVal = FALSE; // TODO: Set this parameter to T RUE or FALSE; 
 
iResult = PCI3E_SetTriggerOnZero(iDeviceNo, iEncode r, bVal); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_SetTriggerOnZero Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iEncoder As Integer, By Val bVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iEncoder As Integer 
Dim bVal As Long 
 
iDeviceNo = 0   
iEncoder = 0  
bVal = False  
 
errCode = PCI3E_SetTriggerOnZero(iDeviceNo, iEncode r, bVal) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 147

9.4.81 PCI3E_Shutdown 
Description: 
This function must be call in order to disconnect from PCI3E driver. 
  
C Language Function Prototype: 
void _stdcall PCI3E_Shutdown(); 
 
Returns: 
None 
 
Parameters: 
None 
 
Example C Usage: 
PCI3E_Shutdown(); 

 
VB Language Function Declaration: 
Public Declare Sub PCI3E_Shutdown Lib "USD_PCI_3E.d ll" ()  

 
Example VB Usage: 
PCI3E_Shutdown  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 148

9.4.82 PCI3E_StartAcquisition 
Description: 
This function starts a data acquisition. The data acquisition will stop once the specified number of 
data has been reached. PCI3E_StopAcquisition  can be used to abort the acquisition in progress. 
 
C Language Function Prototype: 
int _stdcall PCI3E_StartAcquisition(short iDeviceNo ); 
 
Returns: 
None 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  

 
iResult = PCI3E_StartAcquisition(iDeviceNo); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_StartAcquisition Lib "USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer) As Long 
 

Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0   
 
errCode = PCI3E_StartAcquisition(iDeviceNo) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 149

9.4.83 PCI3E_StopAcquisition 
Description: 
This function aborts the data acquisition in progress. 
 
C Language Function Prototype: 
int _stdcall PCI3E_StopAcquisition(short iDeviceNo) ; 
 
Returns: 
None 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;  

 
iResult = PCI3E_StopAcquisition(iDeviceNo); 
if ( iResult != S_OK ){ // Handle error... } 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_StopAcquisition Lib " USD_PCI_3E.dll" (ByVal 
iDeviceNo As Integer) As Long 
 

Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
 
iDeviceNo = 0   
 
errCode = PCI3E_StopAcquisition(iDeviceNo) 
If errCode <> 0 then  
 ‘ Handle error… 
End If 



 150

9.4.84 PCI3E_UnRegisterInterruptHandler 
Description: 
This function removes a registered callback function reference that is called when an interrupt is 
detected. 
   
C Language Function Prototype: 
int _stdcall PCI3E_UnRegisterInterruptHandler(short  iDeviceNo);  

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies 
function call is successful. 

 
Parameters: 
iDeviceNo: identifies the PCI-3E card (zero based).  

 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
 
iResult = PCI3E_UnRegisterInterruptHandler(iDeviceN o); 
if ( iResult != S_OK ){ // Handle error...} 
 
VB Language Function Declaration: 
Public Declare Function PCI3E_UnRegisterInterruptHa ndler Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
  
iDeviceNo = 0   
 
errCode = PCI3E_UnRegisterInterruptHandler(iDeviceN o) 
If errCode <> 0 then  
 ‘ Handle error.. 
End If 



 151

9.4.85 PCI3E_WriteOutputPortRegister 
Description: 
This function sets the value stored in the Output Port Register. 
 
C Language Function Prototype: 
int _stdcall PCI3E_WriteOutputPortRegister(short iD eviceNo, unsigned char 
ucVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
ucVal : value value to be written to the output port register.    
 
Bit 7-4: always 0 
Bit 3: Output Port – OUT3 
Bit 2: Output Port – OUT2 
Bit 1: Output Port – OUT1 
Bit 0: Output Port – OUT0 
 
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0; 
unsigned char ucVal = 0x3; // Turn on ouput bits 0 and 1. 
 
iResult = PCI3E_WriteOutputPortRegister(iDeviceNo, ucVal); 
if( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_WriteOutputPortRegist er Lib "USD_PCI_3E.dll" 
(ByVal iDeviceNo As Integer, ByVal ucVal As Byte) A s Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim bytVal As Byte 
 
iDeviceNo = 0 
bytVal = &H3 ‘ Turn on output bits 0 and 1. 
 
errCode =  PCI3E_WriteOutputPortRegister(iDeviceNo,  bytVal) 
If errCode <> 0 Then  
 ‘ Handle error... 
End If 



 152

9.4.86 PCI3E_WriteRegister 
Description: 
This function allows a value to be written into a specified PCI-3E register. 
 
C Language Function Prototype: 
int _stdcall PCI3E_WriteRegister(short iDeviceNo, s hort iRegister, unsigned 
long ulVal); 

 
Returns:   
Result code as an integer:  See error code section for values other than zero.  Zero implies function 
call is successful. 
 
Parameters: 
iDeviceNo : identifies the PCI-3E card (zero based).  
iRegister : identifies the specific register to read.  Valid registers are 0 - 47. 
ulVal  : the value to be written to the specified register.    
  
Example C Usage: 
int iResult = S_OK; 
short iDeviceNo = 0;   
short iRegister = 0;    
unsigned long ulVal = 0;   
 
iResult = PCI3E_WriteRegister(iDeviceNo,  iRegister , ulVal); 
if( iResult != S_OK ){ // Handle error...} 

 
VB Language Function Declaration: 
Public Declare Function PCI3E_WriteRegister Lib "US D_PCI_3E.dll" (ByVal 
iDeviceNo As Integer, ByVal iRegister As Integer, B yVal ulVal As Long) As Long 

 
Example VB Usage: 
Dim errCode As Long 
Dim iDeviceNo As Integer 
Dim iRegister As Integer 
Dim lVal As Long 
 
iDeviceNo = 0   
iRegister = 0  
lVal = 0     
 
errCode = PCI3E_WriteRegister(iDevice, iRegister, l Val) 
If errCode <> 0 Then  
 ‘ Handle error... 
End If 



 153

10 Interface Circuits 

10.1 Encoder Channel Input 
 
 
 
  

                                        

Pins 2, 3, 5

Pin 1

GND

+0.6VDC

51 Ohms

Pin 4

+5VDC DS26C32

 
  

Figure 10.1.1 Single-ended input 
 
 
 
 

        

Pin 7

Pins 3, 5, 9

DS26C32

Pins 4, 6, 10

4700 pF

+5VDC

Pin 2

GND

+

-

150 Ohms

+

-

 
 

Figure 10.1.2 Differential input 
 
 
 
 
 



 154

10.2 Input/Output Port 
 
 
 
 

     

Pins 4, 6, 8, 10

+5VDC

74HCT14

2.67k

 
 

Note: (1) This diagram applies to the following pins of the “I/O PORT” connector: 
        IN0 – pin 4 

  IN1 – pin 6 
  IN2 – pin 8 
  IN3 – pin 10 
    (2) Input pins have built-in digital noise filters. Pulses with less than 2 microsecond     

width are considered noises and rejected. 
 

Figure 10.2.1 Input port diagram 
 
 
 
 

 

                  

10k

FDN337N
Pins 1, 3, 5, 9

ESDA25SC6
25V Transient
Voltage Suppressor 

 
     Note:   This diagram applies to the following pins of the “I/O PORT” connector: 

OUT0 – pin 1 
OUT1 – pin 3 
OUT2 – pin 5 
OUT3 – pin 9 
 

Figure 10.2.2 Output port diagram 
 
 



 155

                     

Pin 2

Pin 7

+5VDC

100 ohms

GND  
  

Note: A current limiting resistor protects an encoder accidentally connected to the I/O port. 
 

Figure 10.2.3 Power and Ground pins of the “I/O PORT” connector 



 156

11 Error Codes 
•  NO_CARDS_DETECTED    -1  
•  INVALID_DEVICE_NUMBER   -2 
•  DEVICE_NOT_OPEN    -3 
•  INVALID_ENCODER_NUMBER   -4 
•  INVALID_REGISTER_NUMBER   -5 
•  INVALID_SLOT_NUMBER   -6 
•  INVALID_QUADRATURE_MODE  -7 
•  FEATURE_NOT_SUPPORTED   -8 
•  INVALID_COUNTER_MODE   -9 
•  FAILED_TO_OPEN_DRIVER   -10 
•  CONTROL_MODE_IS_ZERO   -11 
•  INCORRECT_WINDRIVER_VERSION  -12 
•  OVERRUN_ERROR_DETECTED   -13 
•  FRAMING_ERROR_DETECTED   -14 
•  RX_BUFFER_FULL     -15 
•  INVALID_PARAMETER    -16 
•  FATAL_ERROR     -17 
• FAILED_TO_ENABLE_INTERRUPT  -18 
• INVALID_BUFFER_SIZE    -19 
• INSUFFICIENT_MEMORY   -20 
• FIFO_BUFFER_FULL    -21 
 


