Best Practices for Motion Control: Stepper Motor and Encoder Selection

Design World

Overview

- Selecting a step motor
- Common step motor enhancements
- Case History
- Benefits of an encoder
- Encoder selection

Selecting a Stepper: What to Look for

1. Maximum Efficiency

Torque at Speed

2. Power Available

Voltage & Current

3. Common Issues

- Resonance
- Accuracy

Use your step motor to measure system requirements

- Vary the voltage or the current
- Find an operating speed
- Motor supplier will back calculate required torque

Maximizing Torque @ Operating Speed

24VDC, 2.0 Amps/Phase, Full Stepping

Speed (pps, 1 pulse = 1.8 degree)

Step Motor Efficiency

(Varied by motor winding and power)

Xtreme Torque 4418S Series Comparison

1.8° Step Motor, 24vDC, Rated Current, Bipolar, 1/2 Stepping

Methods of Reducing Resonance

Tips to reduce resonance

- Change Voltage and Current
- Change Inertia of the load
- Change microstepping
- Change to a different motor

Product Comparison

64.0 Drive Microstep Setting 0.9 Degree Motor

64.0 Drive Microstep Setting 0.9 Degree Motor

3709 vs. Standard 0.9

Summary

Vary Current or Voltage to find torque

 Every motor can be maximized for best performance for max efficiency

 Reduce resonance by changing voltage, current, microstepping or load.

Example Applications

Common Enhancements

Lower Speeds and/or Higher Torque- Gearboxes

Reduce Resonance- Dampers

When is an Encoder Needed?

- When *position* of motor must always be maintained
- If a motor stall detection and action is required
- Typical Industries:
 - Medical
 - Solar
 - Semiconductor

Case History

Background:

 Medical device used to remove mucus from patient airways

Requirements:

- High holding torque
- Accurate positioning
- Position feedback

Does my specific application need an Encoder?

Decision Criteria

- Mechanical
- Resolution
- Index
- Differential vs. Single Ended Output

Mechanical

Steppers + Encoders

Mechanical Details

- Frame Size
- Shaft Diameter
- Mounting Bolt Circle
- Environmental Considerations

Resolution

Typical Optical Encoder Disk

Optical Encoder Read Head

Encoder Module With Disk Assembly

Quadrature States

CPR vs. PPR

- CPR Cycles Per Revolution
- PPR Pulses Per Revolution
- Example 100 CPR = 400 PPR

Quadrature Waveform

Reverse Rotation Quadrature Waveform

ı

Quadrature Encoder Signals

- Provide Direction of Shaft Rotation Information
- Enable 4x Resolution Increase Over Disk CPR

 Standard Signals Regardless of Encoder Mechanical Package

Index

Quadrature With Index Waveform

Index Pattern on Optical Encoder Disk

Encoder Third Channel Index

- Once per 360 Degree Rotation
- Gives a Single Absolute Location
- Typically Used for Home or Zero Location

Differential vs. Single Ended Output

Differential A and B Quadrature Output

Differential A with Index

Differential Encoder Signals

- High Electrical Noise Immunity
- Transmitting Encoder Signals Over a Long Distance
- Requires Differential Receiver

Single Ended Quadrature Waveform

Single Ended Encoder Signals

- Simple Interface Requirements
- Most Common Form of Encoder Output
- Short Distance Signal Transmission

Encoder Decision Summary

- Mechanical
- Resolution
- Index
- Differential vs. Single Ended Output
- Final Step Decision

Flexibility and Customization

Custom Encoder

Custom Mounting Encoder

Custom Pinion Gear Encoder

LIN Engineering & US Digital Value Proposition

- Short Lead Times
- Personal Customer Service
- Great Value
- Reliability
- Custom Motion Control Solutions

Questions?

Design World

Thank you for attending!

Design World

